因此,Mamba的动机就是我要让SSM变得更灵活,更context-aware,更selective有选择性,从而增强模型的表征能力。 credit: https://github.com/hkproj/mamba-notes 上图对比了SSM和Mamba(SSM + Selection)的算法。通过参数的形状维度我们可以看出,Mamba的关键点是让模型参数由时不变(time-invariant)转变为了时变(time-va...
然而,它不使用离散序列(如向左移动一次),而是将连续序列作为输入并预测输出序列。 SSM 假设动态系统(例如在 3D 空间中移动的物体)可以通过两个方程从其在时间t时的状态进行预测。 通过求解这些方程,我们假设我们可以揭示统计原理,以根据观察到的数据(输入序列和先前状态)预测系统的状态。 它的目标是找到状态表示h(t...
VideoMamba- State Space Model for Efficient Video Understanding (Shanghai AI lab 2024) - mardinff于20240327发布在抖音,已经收获了73个喜欢,来抖音,记录美好生活!
道客巴巴(doc88.com)是一个在线文档分享平台。你可以上传论文,研究报告,行业标准,设计方案,电子书等电子文档,可以自由交换文档,还可以分享最新的行业资讯。
mamba-state-space-models Star Here are 17 public repositories matching this topic... Language: All Sort: Most stars xmindflow / Awesome_Mamba Star 201 Code Issues Pull requests Computation-Efficient Era: A Comprehensive Survey of State Space Models in Medical Image Analysis natura...
As a visual guide, expect many visualizations to develop an intuition about Mamba and State Space Models! Part 1: The Problem with Transformers To illustrate why Mamba is such an interesting architecture, let’s do a short re-cap of transformers first and explore one of its disadvantages. ...
Note Some changes made between this was opened and when this was merged required re-converting previously-converted GGUF Mamba models. 2024-02-28: using Mamba-specific GGUF key-values instead of (...
ConvMambaSR leverages SSMs to model global dependencies, activating more pixels in the super-resolution task. Concurrently, it employs CNNs to extract local detail features, enhancing the model's ability to capture image textures and edges. Furthermore, we have developed a global鈥揹etail ...
Anomaly Detection Decoder Long-range modeling Mamba State Space Models Unsupervised Anomaly Detection Datasets Edit ImageNet MVTecAD VisA Results from the Paper Edit Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers. Method...
Designing computationally efficient network architectures persists as an ongoing necessity in computer vision. In this paper, we transplant Mamba, a state-space language model, into VMamba, a vision backbone that works in linear time complexity. At the core of VMamba lies a stack of Visual State...