VMamba: Visual State Space Model 论文作者: Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, Yunfan Liu 1. 摘要 卷积神经网络(CNN)与视觉Transformer(ViT)是目前最流行的两种视觉表征基础模型。CNN在线性复杂度下,具有惊人的可扩展性。ViTs在性能方面超过了CNN,但是...
受 Mamba 模型的启发,研究者设计出一种在线性复杂度下同时具有这两种优秀性质的模型,即 Visual State Space Model(VMamba)。大量的实验证明,VMamba 在各种视觉任务中表现卓越。如下图所示,VMamba-S 在 ImageNet-1K 上达到 83.5% 的正确率,比 Vim-S 高 3.2%,比 Swin-S 高 0.5%。方法介绍 VMamba...
与DeiT(ViT)的均匀激活不同,VMamba通过其交叉扫描模块的扫描机制,不仅激活所有像素,而且特别强调交叉形状的激活。这表明VMamba模型在处理每个像素时,更倾向于考虑长期依赖的上下文信息,而不仅仅是局部信息。 VMamba在训练前只展示了局部的有效感受野。但在训练后,其有效感受野变为全局性的,这表明VMamba经历...
Summary: CNNs和ViTs是视觉特征表示领域常用的两个基座模型,CNNs具有显著的可扩展性,线性复杂度与图像分辨率相关,ViTs的拟合能力更强,通过注意力机制的全局感受野和动态权重可以有更好的表现,但是复杂度是二次的。本文提出了一种新的架构——VMamba(Visual State Space Model),继承了CNNs和ViTs的优点,同时还提高了...
受 Mamba 模型的启发,研究者设计出一种在线性复杂度下同时具有这两种优秀性质的模型,即 Visual State Space Model(VMamba)。大量的实验证明,VMamba 在各种视觉任务中表现卓越。如下图所示,VMamba-S 在 ImageNet-1K 上达到 83.5% 的正确率,比 Vim-S 高 3.2%,比 Swin-S 高 0.5%。
作者称Vim是第一个针对密集预测任务的纯SSM-based模型。所谓双向Mamba其实就是正序和反序作为Mamba输入。VMamba: Visual State Space ModelVMamba的作者包括:鹏程实验室-王耀伟 华为-谢凌曦 中国科学院大学-叶齐祥。文章提出的VMamba是一个vision backbone,可以用于分割分类等各 种任务(没有应用unet结构)。提出Visual...
VMamba: Visual State Space Model 论文作者: Yue Liu, Yunjie Tian, Yuzhong Zhao, Hongtian Yu, Lingxi Xie, Yaowei Wang, Qixiang Ye, Yunfan Liu 编译:Frank 审核:Los 卷积神经网络(CNN)与视觉Transformer(ViT)是目前最流行的两种视觉表征...
RS3Mamba: Visual State Space Model for Remote Sensing Images Semantic Segmentation 方法:论文介绍了一种新的遥感图像语义分割网络RS3Mamba,用于解决卷积神经网络(CNNs)和Transformer在遥感图像语义分割中存在的一些问题。CNNs在长距离建模能力不足,而Transformer的计算复杂度较高。该研究利用Visual State Space(VSS)...
受 Mamba 模型的启发,研究者设计出一种在线性复杂度下同时具有这两种优秀性质的模型,即 Visual State Space Model(VMamba)。大量的实验证明,VMamba 在各种视觉任务中表现卓越。如下图所示,VMamba-S 在 ImageNet-1K 上达到 83.5% 的正确率,比 Vim-S 高 3.2%,比 Swin-S 高 0.5%。
受Mamba 模型的启发,研究者设计出一种在线性复杂度下同时具有这两种优秀性质的模型,即 Visual State Space Model(VMamba)。大量的实验证明,VMamba 在各种视觉任务中表现卓越。如下图所示,VMamba-S 在 ImageNet-1K 上达到 83.5% 的正确率,比 Vim-S 高 3.2%,比 Swin-S 高 0.5%。