ControlNet预处理器:<stable-diffusion-webui>/extensions/sd-webui-controlnet/annotator/downloads 注意需替换 <stable-diffusion-webui> 为你自己的SD WebUI部署路径。 安装成功后,在“文生图”、“图生图”界面的下方会出现 ControlNet 区域,点击右侧的展开按钮,下边有4个ControlNet 单元,也就是我们最多可以同...
该宽高代表 ControlNet 引导时所使用的控制图像的分辨率,假如你用 SD 生成的图片是 1000x2000 分辨率,那么使用 ControlNet 引导图像时,对显存的消耗将是非常大的;我们可以将引导控制图像的分辨率设置为 500x1000 ,也就是缩放为原本图像一半的分辨率尺寸去进行引导,这有利于节省显存消耗。 13. 创建空白画布(Create B...
ControlNet是斯坦福大学研究人员开发的Stable Diffusion的扩展,使创作者能够轻松地控制AI图像和视频中的对象。它将根据边缘检测、草图处理或人体姿势等各种条件来控制图像生成。ControlNet可以概括为一种简单的稳定扩散微调方法。安装插件 在Stable Diffusion WebUI,可以通过下面的标签使用:如果你没有看到这个标签,可以在...
插件安装完成之后,还没完,我们需要安装下模型,跟着我做,首先去这个链接下载: https://huggingface.co/lllyasviel/ControlNet/tree/main/models 把下载的模型全部选中复制(ctrl+c)一下,我们需要移动到对应文件夹中。看我的文件路径,别搞错了,把文件复制到这里来(一定不要复制到 Stable Diffusion 模型中去...
stable diffusion十七种controlnet详细使用方法总结 前言 最近不知道发点什么,做个controlnet 使用方法总结好了,如果你们对所有controlnet用法,可能了解但是有点模糊,希望能对你们有用。 一、SD controlnet 我统一下其他参数,仅切换controlnet模型,为你演示效果 ...
下面可以尝试使用OpenPose图像作为条件输入:controlnet-aux 模块支持将图像转换为 OpenPose 骨骼图像。 我们创建一个名为 pose_inference.py 的新 Python 文件并添加以下导入:import torchfrom PIL import Imagefrom controlnet_aux import OpenposeDetectorfrom diffusers import StableDiffusionControlNetPipeline, ControlNet...
一、ControlNet 扩展安装 进入Stable Diffusion 界面,点击扩展标签,选择从 URL 安装,然后输入 ControlNet 网址(https://github.com/Mikubill/sd-webui-controlnet),粘贴到对应的地方,然后点击安装。 完成之后,点击已安装标签,将刚刚安装的扩展选项打钩,随后点应用并重启UI按钮。
下一步是使用刚才生成的canny图像作为条件输入执行推理。 import cv2 import torch import numpy as np from PIL import Image from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, DPMSolverMultistepScheduler 初始化ControlNet和Stable Diffusion管道 ...
注意需替换 <stable-diffusion-webui> 为你自己的SD WebUI部署路径。 安装成功后,在“文生图”、“图生图”界面的下方会出现 ControlNet 区域,点击右侧的展开按钮,下边有4个ControlNet 单元,也就是我们最多可以同时使用4个 ControlNet 来控制出图的效果,一般情况都能满足。需要注意,同时使用的模型越多,生成图片...
ControlNet 直译就是控制网,是一个神经网络结构。它通过添加额外的条件来控制扩散模型,为 Stable Diffusion 带来了前所未有的控制水平,它很好的解决了文生图大模型的关键问题:单纯的关键词的控制方式无法满足对细节控制的需要。 ControlNet 的主要优势在于其简单易用的特性,能够有效地帮助人们完成复杂的图像处理任务。它...