ST-GCN 的基础是时空图结构。从骨架关键点序列构建时空图 (spatial-temporal graph) 的想法来源于我们对现有的骨架动作识别方法以及图像识别方法的观察。我们发现,现有的基于骨架的动作识别方法中为了提高识别精度多数引入了一些空间结构信息,包括相邻关键点的连接关系或身体部件等(如手-手肘-肩膀的连接关系)。为了建...
特别的,针对动作识别任务设计的空间构型划分取得了最高的性能,并被最后应用于 ST-GCN 的相关实验中。 我们还将 ST-GCN 的最后一层神经元响应进行了可视化(表 2)。在结果中我们可以明显看到 ST-GCN 能够追踪并深入分析在某个时间段与动作最相关的身体部分的运动,这解释了为何 ST-GCN 相对于其他不关注空间结构的...
Github 代码:https://github.com/yysijie/st-gcn 简介 近日,香港中大-商汤科技联合实验室的最新 AAAI 会议论文「Spatial Temporal Graph Convolution Networks for Skeleton Based Action Recognition」提出了一种新的 ST-GCN,即时空图卷积网络模型,用于解决基于人体骨架关键点的人类动作识别问题。该方法除了思路新颖之外...
特别的,针对动作识别任务设计的空间构型划分取得了最高的性能,并被最后应用于 ST-GCN 的相关实验中。 我们还将 ST-GCN 的最后一层神经元响应进行了可视化(表 2)。在结果中我们可以明显看到 ST-GCN 能够追踪并深入分析在某个时间段与动作最相关的身体部分的运动,这解释了为何 ST-GCN 相对于其他不关注空间结构的...