近日,香港中大-商汤科技联合实验室的最新 AAAI 会议论文「Spatial Temporal Graph Convolution Networks for Skeleton Based Action Recognition」提出了一种新的 ST-GCN,即时空图卷积网络模型,用于解决基于人体骨架关键点的人类动作识别问题。该方法除了思路新颖之外,在标准的动作识别数据集上也取得了较大的性能提升。...
由于ST-GCN在不同节点上共享权重,因此保持输入数据的比例在不同节点上保持一致非常重要。在实验中,将数据进行正则化在输入到batch normalization。ST-GCN模型由九层时空图卷积组成。前三层输出64通道数,中间三层输出128通道,最后三层输出256层通道数。一共有9个时间卷积核,在每一个ST-GCN使用残差链接,使用dropout进行...
近日,港中大-商汤科技联合实验室的最新 AAAI 会议论文「Spatial Temporal Graph Convolutional Networks for Skeleton Based Action Recognition」提出了一种新的 ST-GCN,即时空图卷积网络模型,用于解决基于人体骨架关键点的人类动作识别问题。该方法除了思路新颖之外,在标准的动作识别数据集上也取得了较大的性能提升。本文...
近日,香港中大-商汤科技联合实验室的最新 AAAI 会议论文「Spatial Temporal Graph Convolution Networks for Skeleton Based Action Recognition」提出了一种新的 ST-GCN,即时空图卷积网络模型,用于解决基于人体骨架关键点的人类动作识别问题。该方法除了思路新颖之外,在标准的动作识别数据集上也取得了较大的性能提升。本文...
: 计算机视觉/计算机图形理论与应用 Shift-GCN是用于骨骼点序列动作识别的网络,为了讲明其提出的背景,有必要先对ST-GCN网络进行一定的了解。ST-GCN网络骨骼点序列数据是一种天然的时空图结构数据,具体分析可见[5,6],针对于这类型的数据,可以用时空图卷积进行建模,如ST-GCN[4]模型就是一个很好的代表。简单来说,...
简介本仓库包含论文《用于基于骨架的动作识别的空间时间图卷积网络》的相关代码、数据集和模型。 ST-GCN 动作识别演示我们的基于骨架的动作识别演示展示了ST-GCN如何从人体骨架中提取局部模式和关联性。下图显示了我们ST-GCN最后一层中每个节点的神经响应幅度。
搭建S-GCN模型 所谓ST-GCN的S和T就是空间和时间。为了模仿2D卷积,我们需要设置滑动窗口。在时间维度上其实这个操作相当简单,因为它是一个时序信息;在空间上稍复杂,因为它是一个图信息。因此我们分两步构建ST-GCN。先构建S-GCN: classSpatialGraphConvolution(nn.Module):def__init__(self,in_channels,out_channe...
针对当下基于图像的传统跌倒检测算法难以提取时域动作特征所导致的模型检测过程中所存在无法提取动态信息问题,建立了一种基于关节点提取和改进的ST-GCN模型的实时跌倒检测算法.首先根据姿态识别算法Alphapose提取视频中人体的骨架关节点信息;然后对时域中的骨架关节点序列进行Kalman滤波估计,得到稳定变化的人体时空图;最后在传...
对于前端子任务,通过融合时空图卷积网络和长短期记忆网络,提出了一种有效的 ST-GCN-LSTM 模型。对于第二个子任务,采用YOLO v3模型进行手持物体识别。然后,我们构建了一个机器人与人类交互的框架。最后, "点击查看英文标题和摘要" 更新日期:2021-03-01
python毕设-基于pytorch时空图卷积ST-GCN的骨骼动作识别源码+模型 python毕业设计-基于时空图卷积(ST-GCN)的骨骼动作识别代码+文档说明,含有代码注释,新手也可看懂,个人手打98分项目,导师非常认可的高分项目,毕业设计、期末大作业和课程设计高分必看,下载下来,简单部署,就可以使用。 python毕业设计-基于时空图卷积(ST-GC...