Softmax_Cross_Entropy的实现方式如下 \begin{gathered} \log \left(P_{j}\right)=\log \left(\frac{e^{x_{j}}}{\sum_{i=1}^{i} e^{x_{i}}}\right) \\ =\log \left(e^{x_{j}}\right)-\log \left(\sum_{i=1}^{n} e^{x_{i}}\right) \\ =x_{j}-\log \left(\sum_{...
由于softmax 可以将一组变量转换为概率分布,而 cross-entropy 又能够衡量两个概率分布之间的距离,因此,softmax 和 cross-entropy 经常结合在一起使用 总的来说,交叉熵损失函数刻画了两个概率分布之间的距离,通常用在神经网络的多分类任务中,可以表示真实标签值与神经网络输出经softmax计算后得到的预测概率值之间的损...
前言Softmax 通常用于将网络的输出控制到 [0,1] 范围内,而 Cross-entropy(交叉熵)通常用在分类任务,将模型的对 k 个类别的预测结果与实际的标签之间计算出一个 loss,而这个 loss 通常使用交叉熵来实现。 注:…
softmax 和 cross-entropy 本来太大的关系,只是把两个放在一起实现的话,算起来更快,也更数值稳定。 cross-entropy 不是机器学习独有的概念,本质上是用来衡量两个概率分布的相似性的。简单理解(只是简单理解!)就是这样, 如果有两组变量: 如果你直接求 L2 距离,两...
softmax和crossentropy 当进行多分类任务时,通常会使用 Softmax 函数和 CrossEntropyLoss 损失函数来处理模型的输出和计算损失。 Softmax 函数: Softmax 函数用于将模型的原始输出转换为概率分布。对于一个具有 K 个类别的模型输出向量 z,Softmax 函数的定义如下:...
熵(Entropy)和交叉熵(Cross-Entropy)是信息论中的两个重要概念;下面将依次介绍这两个概念 熵 Q:熵(...
与CrossEntropy的关系。希望帮助大家理解多分类损失函数CrossEntropy。 max 首先,给出 函数的表达式 这个式子怎么来的,详见:链接 然后,选定常数 ,就有近似 在模型中,很多时候可以设 ,这等价于把 融合到模型自身之中,所以最简单地有 的光滑近似: ...
从形式上来看,这样的损失函数定义类似于信息论中的交叉熵(cross-entropy):(2)H[P]=∑j−P(j)...
softmax与cross-entropy之间的关系主要体现在它们经常被结合使用在分类任务中。虽然直接计算cross-entropy可能会更快,且数值稳定性更好,但softmax和cross-entropy通常被整合在一起使用,例如在PyTorch中的torch.nn.CrossEntropyLoss函数,它将logsoftmax和NLLLoss整合在一起。这种组合方式在实现上更为简便,...
softmax 和 cross-entropy 本来太大的关系,只是把两个放在一起实现的话,算起来更快,也更数值稳定。 cross-entropy 不是机器学习独有的概念,本质上是用来衡量两个概率分布的相似性的。简单理解(只是简单理解!)就是这样, 如果有两组变量: 如果你直接求 L2 距离,两个距离就很大了,但是你对这俩做 cross entropy...