Softmax 函数可以用来将模型的原始输出转化为概率分布,以便进行多分类任务的预测。 CrossEntropyLoss 损失函数: CrossEntropyLoss 是用于多分类任务的常见损失函数。对于一个具有 K 个类别的预测概率分布 y_pred 和真实标签 y_true,CrossEntropyLoss 的定义如下: CE(y_pred, y_true) = -sum(y_true * log(y_p...
softmax 和 cross-entropy 本来太大的关系,只是把两个放在一起实现的话,算起来更快,也更数值稳定。 cross-entropy 不是机器学习独有的概念,本质上是用来衡量两个概率分布的相似性的。简单理解(只是简单理解!)就是这样, 如果有两组变量: 如果你直接求 L2 距离,两...
一张图形经过神经网络处理,然后经过softmax函数处理得到概率分布[0.775,0.116,0.039,0.070],见下图...
在深度学习中,softmax和cross-entropy通常结合使用。softmax是一种函数,可以将一个k维的向量z映射到另一个k维的向量σ,其中z的每一项z_i都被替换为一个介于0和1之间的值σ_i。这使得softmax函数可以用于将任何k维向量转换为一个有效的概率分布。 交叉熵,又称为交叉熵损失,是一种度量两个概率分布之间差异的...
Cross-Entropy Loss (交叉熵损失)关于softmax的输入的Jacobian 当softmax 为网络的最后一层,且Loss 函数采用 Cross−Entropy 时,为了进行反向传播,需要计算 Cross−Entropy Loss 关于softmax 的输入的 Jacobian。对于单个样本来说,Cross−Entropy Loss的公式为 LCE=−∑k=1Cyilog(pi) 其中y=(y1,y2,⋯...
1、熵与交叉熵 “交叉熵”包含了“交叉”和“熵”这两部分。关于“熵”的描述在理解熵的本质一文中...
神经网络解决多分类问题时,通常在最后使用 softmax layer + cross-entropy 的组合方案,本文将介绍这一部分的前向传播和反向传播过程。 1 前向传播 神经网络进行训练时,从输入层开始,前向传播经过隐藏层运算,最后经过softmax layer得到预测分类概率分布,然后通过cross-entropy计算预测分类概率分布和目标分类概率分布的损...
理清了softmax loss,就可以来看看cross entropy了。 corss entropy是交叉熵的意思,它的公式如下: 是不是觉得和softmax loss的公式很像。当cross entropy的输入P是softmax的输出时,cross entropy等于softmax loss。Pj是输入的概率向量P的第j个值,所以如果你的概率是通过softmax公式得到的,那么cross entropy就是soft...
softmax与cross-entropy之间的关系主要体现在它们经常被结合使用在分类任务中。虽然直接计算cross-entropy可能会更快,且数值稳定性更好,但softmax和cross-entropy通常被整合在一起使用,例如在PyTorch中的torch.nn.CrossEntropyLoss函数,它将logsoftmax和NLLLoss整合在一起。这种组合方式在实现上更为简便,...
CrossEntropy Loss CrossEntropy 经常被用来定义损失函数, CrossEntropy Loss被定义为 对于第一个结果 [ 0.227863 , 0.61939586, 0.15274114], y_true = [0, 1, 0] 上式变成 总结 Softmax 把认为神经网络的结果是没有归一化的 Logit, 它会把结果归一化为概率分布。 而CrossEntropy 则会计算出该概率分布对真是...