代数输入 三角输入 微积分输入 矩阵输入 sin(x)sinh(x)−cos(x)cosh(x) 求值 sinh(x)sin(x)−cosh(x)cos(x) 关于x 的微分 2cosh(x)sin(x) 图表
sinh x ,cosh x, tanh x, coth x, cosech x, sech x are the angles of circular functions. Answer and Explanation:1 Formula of sinh X is: {eq}\sinh X=\frac{e^{X}-e^{-X}}{2} {/eq} Formula of cosh Y is: {eq}\cosh Y=\frac{e^{Y}+e^{-Y}}{2} {/eq} ...
Compute exp(-x) and store the result. Compute exp(x) - exp(-x). Divide the result by 2. That's it; well done! What is the derivative of sinh? The derivative of sinh is cosh, that is, the hyperbolic cosine, defined as cosh(x) = (exp(x) + exp(-x))/2. You can easily re...
sinh2x=2sinhxcoshx Question: Prove the following identity: sinh2x=2sinhxcoshx Double Angle Sine Hyperbolic Function: To simplify the multiplication of hyperbolic functions using their exponential expressions given below, use the general algebraic formula and exponent rule of exp...
12.2.23 sinh, cosh, tanh, asinh, acosh, atanh FunctionSyntax:sinh numberresult cosh number result tanh number result asinh number result acosh number result atanh number result Arguments and Values: number - a number. result - a number. Description:...
2.5.3.25 CosH 2.5.3.26 Creator 2.5.3.27 CY 2.5.3.28 Date 2.5.3.29 DateTime 2.5.3.30 DateValue 2.5.3.31 Day 2.5.3.32 DayOfYear 2.5.3.33 Deg 2.5.3.34 DependsOn 2.5.3.35 Description 2.5.3.36 Directory 2.5.3.37 Div 2.5.3.38 DocCreation 2.5.3.39 DocLastEdit 2.5.3.40 DocLastPrint 2.5.3.41 Doc...
ccosh (C99) csinh (C99) ctanh (C99) cacosh (C99) casinh (C99) catanh (C99) Defined in header<complex.h> floatcomplexcasinhf(floatcomplexz); (1)(since C99) doublecomplexcasinh(doublecomplexz); (2)(since C99) longdoublecomplexcasinhl(longdoublecomplexz); ...
sinh2x = (cosh(2x) − 1) /2 sinh3x = (sinh(3x) − 3 sinhx) /4 sinh4x = (cosh(4x) − 4 cosh(2x) + 3) /8 sinh5x = (sinh(5x) − 5 sinh(3x) + 10 sinhx) /16 Sum and difference of arguments:sinh(x + y) = sinhx coshy + coshx sinhy sinh(x − y) = ...
The power formula of the differentiation is: {eq}\ \ \ \ \ \ \ \ \displaystyle \frac{d}{dx}[x^n] = n x^{n - 1} {/eq} Differentiation of the hyperbolic functions are: {eq}\ \ \ \ \ \ \ \ \displaystyle \frac{d}{dx}[\sinh x] = \cosh x...
1 prove the following identities:a.cosh(2x)=cosh^2(x)+sinh^2(x) b.cosh(x+y)=cosh(x)cosh(y)+sinh(x)sinh(y)2.show that the inverse hyperbolic cosine function is cosh^-1(x)=ln( x+根号下x^2-1 ) by adapting the method used in class to derive the invers