代数输入 三角输入 微积分输入 矩阵输入 sin(x)sinh(x)−cos(x)cosh(x) 求值 sinh(x)sin(x)−cosh(x)cos(x) 关于x 的微分 2cosh(x)sin(x) 图表
sinh x ,cosh x, tanh x, coth x, cosech x, sech x are the angles of circular functions. Answer and Explanation:1 Formula of sinh X is: {eq}\sinh X=\frac{e^{X}-e^{-X}}{2} {/eq} Formula of cosh Y is: {eq}\cosh Y=\frac{e^{Y}+e^{-Y}}{2} {/eq} ...
Namely, we have the double-angle formula sinh2t=2sinhtcoshtsinh2t=2sinhtcosht and cosh2x−sinh2x=1cosh2x−sinh2x=1 which is an analogue of the Pythagorean trigonometric identity cos2x+sin2x=1cos2x+sin2x=1. Graph and properties of sinh Let us plot the ...
coshx=ex+e−x2sinhx=ex−e−x2 2.) Algebraic Formula and Exponent Rule. (m−n)(m+n)=m2−n2(ea)b=eab Answer and Explanation:1 Given identity: sinh2x=2sinhxcoshx The exponential expression for the left-hand side is: ...
cosh number result tanh number result asinh number result acosh number result atanh number result Arguments and Values: number - a number. result - a number. Description: These functions compute the hyperbolic sine, cosine, tangent, arc sine, arc cosine, and arc tangent functions, which...
below, please copy or enter the below formula in the top cell (D6) of the result list, and pressEnterto get the result. Then select the result cell, and drag the fill handle (the small square in the lower-right corner of the selected cell) down to apply the formula to the below ...
1 prove the following identities:a.cosh(2x)=cosh^2(x)+sinh^2(x) b.cosh(x+y)=cosh(x)cosh(y)+sinh(x)sinh(y)2.show that the inverse hyperbolic cosine function is cosh^-1(x)=ln( x+根号下x^2-1 ) by adapting the method used in class to derive the invers
casinhfis called. Ifzis real or integer, then the macro invokes the corresponding real function (asinhf,asinh,asinhl). Ifzis imaginary, then the macro invokes the corresponding real version of the functionasin, implementing the formulaasinh(iy) = i asin(y), and the return type is imaginary...
sinh2x = (cosh(2x) − 1) /2 sinh3x = (sinh(3x) − 3 sinhx) /4 sinh4x = (cosh(4x) − 4 cosh(2x) + 3) /8 sinh5x = (sinh(5x) − 5 sinh(3x) + 10 sinhx) /16 Sum and difference of arguments:sinh(x + y) = sinhx coshy + coshx sinhy sinh(x − y) = ...
sin(x.imag)) return complex(_real,_imag) else: # need to raise math domain error if y is +/- infinity and x is not a NaN if x.imag != .0 and not math.isnan(x.real): raise ValueError("math domain error") return _SPECIAL_VALUE(x,_cosh_special_values) if math.fabs(x.real...