1.Self-attention可以考虑全部的输入,而RNN似乎只能考虑之前的输入(左边)。但是当使用双向RNN的时候可以避免这一问题。 2.Self-attention可以容易地考虑比较久之前的输入,而RNN的最早输入由于经过了很多层网络的处理变得较难考虑。 3.Self-attention可以并行计算...
核心差异:Self-Attention关注序列内每个位置对其他所有位置的重要性,而Multi-Head Attention则通过在多个子空间中并行计算注意力,使模型能够同时捕获和整合不同方面的上下文信息,从而增强了对复杂数据内在结构的建模能力。 Self-Attention(自注意力机制):自注意力机制的核心是为输入序列中的每一个位置学习一个权重分布,这...
同时,引入Self Attention后会更容易捕获句子中长距离的相互依赖的特征,因为如果是RNN或者LSTM,需要依次序序列计算,对于远距离的相互依赖的特征,要经过若干时间步步骤的信息累积才能将两者联系起来,而距离越远,有效捕获的可能性越小。 但是Self Attention在计算过程中会直接将句子中任意两个单词的联系通过一个计算步骤直接...
一个head 可能只能学会一种“关注方式”(比如主谓关系),但语言现象非常丰富! 所以Transformer 引入了多个 head,并行计算多个 Q/K/V: head_i = Attention(Q_i, K_i, V_i) ← 每个 head 有独立参数 output = Concat(head_1, ..., head_h) @ W_o 每个head 学习一个“语言子技能”,最后组合成一个...
自注意力机制(Self-Attention) 概述 普通自注意力(Self-Attention)的工作原理主要是让模型能够关注输入序列中不同位置的信息,并根据这些信息来生成当前位置的输出。它是Transformer模型中的一个关键组件,尤其在处理序列数据(如文本、语音等)时表现出色。 以下是自注意力机制的优缺点分析:...
3.3 self-attention的本质 3.4 self-attention的Q, K, V思想 4 Positional Encoding:位置信息的整合 5 Transformers:打通seq2seq任督二脉 5.1 Cross-Attention:Self-Attention的双塔实践 5.2 Transformer Decoder的训练和预测 5.3 Masked Self-Attention:防止偷看答案 5.4 Multi-head Attention:扩大参数量和语义分化 5.5...
首先,self-attention会计算出三个新的向量,在论文中,向量的维度是512维,我们把这三个向量分别称为Query、Key、Value,这三个向量是用embedding向量与一个矩阵相乘得到的结果,这个矩阵是随机初始化的,维度为(64,512)注意第二个维度需要和embedding的维度一样,其值在BP(反向传播)的过程中会一直进行更新,得到的这三...
在2021 年课程的 transformer 视频中,李老师详细介绍了部分 self-attention 内容,但是 self-attention 其实还有各种各样的变化形式: 先简单复习下之前的 self-attention。假设输入序列(query)长度是 N,为了捕捉每个 value 或者 token 之间的关系,需要对应产生 N 个 key 与之对应,并将 query 与 key 之间做 dot-pr...
Self-attention是Transformer最核心的思想,这两天重新阅读了论文,有了一些新的感想,便急忙将其记下,与朋友们共勉。 博主刚开始接触self-attention时,最不理解的地方就是Q K V这三个矩阵以及我们常提起的query查询向量,现在想来,应该是被纷繁复杂的高维矩阵运算难住了,没有真正理解矩阵运算的核心意义。因此,在本文之...
自注意力机制(self-attention) B站视频-李宏毅机器学习2021-自注意力机制 1.要解决的问题 当把输入看成一个向量,输出是数值或者类别。但是如果遇到更复杂的问题呢? 假设输入是多个向量,而且数目不固定,要怎么处理呢? 总结-自注意力机制要解决的问题是:当神经网络的输入是多个大小不一样的向量,并且可能因为不同...