Self-Attention,自注意力机制,又称内部注意力机制,顾名思义,是一种将单个序列的不同位置关联起来以计算同一序列的表示的注意机制。 通过对注意力机制的学习我们知道,在一般任务的Encoder-Decoder框架中,输入Source和输出Target内容是不一样的,比如对于英-中机器翻译来说,Source是英文句子,Target是对应的翻译出的中文句...
Self-attention(自注意力机制) Batch Norm & Layer Norm(批量标准化/层标准化),点击跳转 ResNet(残差网络),点击跳转 Subword Tokenization(子词分词法),点击跳转 组装:Transformer 笔记持续更新中~希望和各位小伙伴们一起学习~ 在Transformer中,一共涉及到三个Attention零件。这篇笔记将基于这三个零件,对attention...
1.Self-attention可以考虑全部的输入,而RNN似乎只能考虑之前的输入(左边)。但是当使用双向RNN的时候可以避免这一问题。 2.Self-attention可以容易地考虑比较久之前的输入,而RNN的最早输入由于经过了很多层网络的处理变得较难考虑。 3.Self-attention可以并行计算,而RNN不同层之间具有先后顺序。 1.Self-attention可以考虑...
首先,self-attention会计算出三个新的向量,在论文中,向量的维度是512维,我们把这三个向量分别称为Query、Key、Value,这三个向量是用embedding向量与一个矩阵相乘得到的结果,这个矩阵是随机初始化的,维度为(64,512)注意第二个维度需要和embedding的维度一样,其值在BP(反向传播)的过程中会一直进行更新,得到的这三...
概述 普通自注意力(Self-Attention)的工作原理主要是让模型能够关注输入序列中不同位置的信息,并根据这些信息来生成当前位置的输出。它是Transformer模型中的一个关键组件,尤其在处理序列数据(如文本、语音等)时表现出色。 以下是自注意力机制的优缺点分析: 优点:
自注意力机制(self-attention) B站视频-李宏毅机器学习2021-自注意力机制 1.要解决的问题 当把输入看成一个向量,输出是数值或者类别。但是如果遇到更复杂的问题呢? 假设输入是多个向量,而且数目不固定,要怎么处理呢? 总结-自注意力机制要解决的问题是:当神经网络的输入是多个大小不一样的向量,并且可能因为不同...
Self-Attention: 不是输入语句和输出语句之间的Attention机制,而是输入语句内部元素之间或者输出语句内部元素之间发生的Attention机制。 例如在Transformer中在计算权重参数时,将文字向量转成对应的KQV,只需要在Source处进行对应的矩阵操作,用不到Target中的信息。
Self-Attention: 不是输入语句和输出语句之间的Attention机制,而是输入语句内部元素之间或者输出语句内部元素之间发生的Attention机制。 例如在Transformer中在计算权重参数时,将文字向量转成对应的KQV,只需要在Source处进行对应的矩阵操作,用不到Target中的信息。
Self-Attention是Transformer最核心的思想,最近几日重读论文,有了一些新的感想。由此写下本文与读者共勉。 笔者刚开始接触Self-Attention时,最大的不理解的地方就是Q K V三个矩阵以及我们常提起的Query查询向量等等,现在究其原因,应当是被高维繁复的矩阵运算难住了,没...
在2021 年课程的 transformer 视频中,李老师详细介绍了部分 self-attention 内容,但是 self-attention 其实还有各种各样的变化形式: 先简单复习下之前的 self-attention。假设输入序列(query)长度是 N,为了捕捉每个 value 或者 token 之间的关系,需要对应产生 N 个 key 与之对应,并将 query 与 key 之间做 dot-pr...