ICCV2023论文精选!从微分方程角度理解self-attention机制的底层逻辑! 前言自注意力机制(self-attention)广泛应用于人工智能的各个领域,成功地提升了不同模型的性能。然而,目前对这种机制的解释主要基于直觉和经验,而对于自注意力机制如何帮助性能的直接建模仍然缺乏。为了缓解这个问题,在本文中,基于残差神经网络的动力系统...
自注意力机制(self-attention)广泛应用于人工智能的各个领域,成功地提升了不同模型的性能。然而,目前对这种机制的解释主要基于直觉和经验,而对于自注意力机制如何帮助性能的直接建模仍然缺乏。为了缓解这个问题,在本文中,基于残差神经网络的动力系统视角,我们首先展示了在常微分方程(ODEs)的高精度解中存在的本质刚度现象...
在 Self Attention 中,三者相同。 dk 是模型维度。 如果是 Multi-Head Attention,那就把多个 Attention 拼在一起。 简单粗暴又有效,那么能不能对这种结构进行一些改进呢? 首先是 EMNLP 2019 中,腾讯 AI Lab 的三篇关于改进 SANs 的论文(本文中,Self Attention Networks 简记为 SANs)。 EMNLP 2019 论文链接:...
"Do self-attention layers process images in a similar manner to convolutional layers? "self-attention层是否可以执行卷积层的操作?1.2 作者给出的回答理论角度:self-attention层可以表达任何卷积层。 实验角度:作者构造了一个fully attentional model,模型的主要部分是六层self-attention。结果表明,对于前几层self-...
2. Self-Attention with Relative Position Representations(基于相对位置表示的子注意力模型) 作者:Peter Shaw,Jakob Uszkoreit,Ashish Vaswani 机构:Google Brain 摘要:Relying entirely on an attention mechanism, the Transformer introduced by Vaswani et al. (2017) achieves state-of-the-art results for machine...
对于通道注意力机制,代表性的工作有SENet[2]、ECANet[3];对于空间注意力机制,代表性的工作有Self-Attention[4]。随着空间和通道注意力机制的提出,很自然的,结合空间和通道两个维度的双重注意力机制也被提出,代表工作有CBAM[1],DANet[5]。1. 论文和代码地址论文链接:https://arxiv.org/pdf/2107.00782...
本文介绍的论文是《Self-Attention Graph Pooling》。 该篇文章提出了一种新的图池化方式,该池化方式是基于自注意力机制来计算得分,同时考虑了节点特征和图的拓扑结构,能够实现端到端方式学习图的层次表示。 🍁一、背景 近几年图神经网络已被广泛应用于各个领域,并且表现出了很好的性能,但是对于图进行采样操作仍是...
这篇论文我都不想读完,论文撰写没什么问题,但是论文核心思想太浅了,没东西,有效性证明的很片面,严格点可以直接质疑论文观点正确性。 这篇工作听起来是meta-learning实际上就是用了用MAML,也没原创什么东西, 就是把模型每层中间加了个attention层, 把不同task训练得到的output layer收集起来来构造一个任务无关场景...
论文标题:Self-Attention Graph Pooling 论文作者:Junhyun Lee, Inyeop Lee, Jaewoo Kang 论文来源:2019, ICML 论文地址:download 论文代码:download 1 Preamble 对图使用下采样 downsampling (pooling)。 2 Introduction 图池化三种类型: Topology based pooling; ...
论文《A Self-Attention Joint Model for Spoken Language Understanding in Situational Dialog Applications》,作者Mengyang Chen(ByteDance Corporation, China),经典的NLU论文(Semantic Frame)。 2. 摘要 无 3. 引言 口语理解(SLU)是面向目标的对话系统中的重要组成部分。它通常涉及识别说话者的意图并从用户话语中提取...