["*wte*", "*lm_head*"] # configuration items copied from Qwen rotary_pct: 1.0 rotary_emb_base: 1000000 kv_channels: 128 arch: type: LlamaForCausalLM processor: return_tensors: ms tokenizer: model_max_length: 32768 vocab_file: "path/vocab.json" # can set in run_command --vocab_...
#!/bin/bash CONTAINER_NAME=mindformers-r1.0 CHECKPOINT_PATH=/var/images/llm_setup/model/qwen/Qwen-7B-Chat DOCKER_CHECKPOINT_PATH=/data/qwen/models/Qwen-7B-Chat IMAGE_NAME=swr.cn-central-221.ovaijisuan.com/mindformers/mindformers1.0.2_mindspore2.2.13:20240416 docker run -it -u root \ ...
在语音问答 (QA) 任务中,该模型与Gemini-2.0-Flash和GPT-4o-realtime-preview等相近模型存在差距,因为其较小的模型规模导致事实性问答知识的能力较弱。下图2比较了不同AI模型在语音识别、语音翻译、语音问答、音频理解和语音摘要等类别中的表现。模型包括Phi-1-Multimodal-Instruct、Qwen-2-Audio、WhisperV3、Sea...
--config research/qwen1_5/finetune_qwen1_5_7b_lora.yaml \ --load_checkpoint /workspace/model/Qwen1.5-7B-Chat-ms/qwen-ms.ckpt \ --vocab_file /workspace/model/Qwen1.5-7B-Chat/vocab.json \ --merges_file /workspace/model/Qwen1.5-7B-Chat/merges.txt \ --auto_trans_ckpt True \ --train...
better to support qwen lvhan028 assigned grimoire and AllentDan and unassigned grimoire Feb 26, 2024 Collaborator lvhan028 commented Feb 26, 2024 @AllentDan may refer to https://docs.vllm.ai/en/latest/models/lora.html and https://github.com/vllm-project/vllm/blob/main/examples/multi...
1108 0 00:11 App MPU6050+STM32+舵机云台+0.96 oled角度显示。 2161 0 02:59 App 【开源工程】LoRaUNO分享一款LoRa节点采集,可使用Arduino开发,快速上手,这款模块你见过吗? 1.1万 9 00:38 App 并联增加电流 没毛病 3366 4 04:03 App Qwen2.5本地图像打标工具,lora训练必备,速度快,效果好,自定义打标...
App 魔改8卡2080ti 22G推理 72b 32b Qwen o1模型速度测试 超过200token一秒 4.6万 27 05:47 App 5分钟教会你如何本地部署DeepSeek-R1,无需联网,全程干货,没有一句废话。 5.3万 4 02:52 App Tik Tok上1400万博主谈deepseek冲击股市,英伟达股价创2020年疫情以来最大跌幅 ...
运行qwen1.5的lora训练时报错 报错截图: python -c "import mindspore;mindspore.set_context(device_target='Ascend');mindspore.run_check()" 再尝试增加超时时间 export HCCL_CONNECT_TIMEOUT=7200 export HCCL_EXEC_TIMEOUT=5400
load_checkpoint: '/data/mindformers/research/qwen/qwen_7b_chat_ms.ckpt' src_strategy_path_or_dir: '' auto_trans_ckpt: True # If true, auto transform load_checkpoint to load in distributed model only_save_strategy: False resume_training: False ...
2、通过广泛的实验,TokenSkip在减少CoT token使用量的同时,保持了强大的推理性能。例如,在Qwen2.5-14B-Instruct模型上,TokenSkip在GSM8K数据集上将推理token减少了40%(从313个减少到181个),而性能下降不到0.4%。 3、TokenSkip通过LoRA(Low-Rank Adaptation)微调,仅对模型的0.2%参数进行训练,训练时间短(7B模型约2...