RNA-Seq,即RNA测序技术,也称为转录组测序技术,是一种通过观察基因表达来分析整个基因组的技术。主要测序对象包括信使RNA(mRNA)、微RNA(miRNA)和非编码RNA(ncRNA),用高通量测序技术进行测序分析,反映出它们的表达水平。🚀 高通量测序技术 高通量测序技术(High-throughput sequencing),也称为“下一代”测序技术(Next...
RPKM与FPKM的区别:RPKM值适用于单末端RNA-seq实验数据,FPKM适用于双末端RNA-seq测序数据。 3.TPM (Transcript per million) TPM(Transcripts Per Million) 是一种常用的基因表达量归一化方法,它将基因的表达量调整为每百万条转录本的数量。TPM 值考虑了基因的长度和测序深度,通过将每个基因的 Counts 值除以其长度,...
RNAseq差异分析的目的是评估不同实验条件下哪些基因/功能发生了改变。一个典型的RNAseq分析流程如下图所示: img 在接下来的几节内容中,我们将带你通过使用各种R包完成端到端基因水平RNA-seq差异表达工作流程。我们将从读取Salmon获得的数据开始,将伪计数转换为计数,进行探索性数据分析以进行质量评估,并探索样本之间的...
差异基因表达分析是一种常见的生信分析方法,是每个生信人都必须掌握的技术,本文将使用R语言演示如何利用limma包分析TCGA的RNA基因表达矩阵。 首先,准备好所需的数据,如下图所示,基因表达数据为一个包含样品与基因的矩阵。 首先,打开R之后先加载所需的R包。其中,limma是差异基因表达分析的一个常用R包,ggplot2和ggrep...
跟着存档教程动手学RNAseq分析(四):使用DESeq2进行DE分析的QC方法 DESeq2差异表达分析 差异表达分析工作流的最后一步是将原始计数拟合到NB模型中,并对差异表达基因进行统计检验。在这一步中,我们主要想确定不同样本组的平均表达水平是否存在显著差异。
RNAseq简介RNAseq分析流程六点了官网的RNAseq流程 RNAseq简介 转录组是连接遗传信息与生物功能的桥梁,在广义上指在相同生理条件下的一个或一群细胞中所能转录出的所有RNA的总和,包括编码RNA及非编码RNA;狭义上指所有mRNA的集合[1]。转录组测序分析(RNA-seq)通过提取所要研究的mRNA,将其反转录成cDNA文库,在DNA小...
RNA-seq数据分析 判断测序的质量 分析的第一步,一般是先把测到的RNA片段,先mapping(比对)到基因组上。在比对完后,可以先看一下,有多少RNA片段是在靠近基因的5'端位置,又有多少片段在是靠近基因的3'端位置。 上图就是把所有的基因,都按其外显子的长度拉直,然后归一化到“0 - 100”的长度。看比对上的片段...
反之,如果这根曲线的 3'端很高,且 5'端比较低,我们就可以初步判断,这个 RNA 有一定程度的降解。 如果测序的质量不错,接下来就可以进行表达差异的分析。 RPKM 指标 目前最常用的,对基因表达量进行相对定量的一个指标,就是「RPKM 值」(Reads Per Kilobase ...
RNA-seq数据分析通常包括以下几个步骤:数据预处理、序列比对、定量分析、差异表达分析、功能注释和可视化。其中,序列比对是RNA-seq数据分析的关键步骤之一,因为它直接影响到后续的基因定量和差异表达分析。序列比对的目的是将测序获得的reads(短序列片段)与参考基因组或转录组进行匹配,从而确定这些reads来源于哪些基因或转...