三.上述几个标准都符合后,我们就可以开始对数据进行分析了,首先是看你的分析目的。 RNA-seq可以做的大都是相关性研究,通过比较找到一些差异,从基因表达上给你的课题指明一定的方向,一般来说,单独做RNA-seq,有如下几个常见的目的。 1. 如果你的样本是实验组与对照组的关系,那么寻找差异基因是关键,这可以通过RNA...
可以看到,两个用于输入分析的数据集均是经过R的DEseq2或limma包差异分析后的统计结果表格,包含了差异倍数(logFC),P值(P.Value),校正后的P值(adj.P.Val)等等。 随后,将两组分析结果汇总成一个列表(list),作为后续研究分析的输入数据。在该R包分析过程中,除了输入单个分析结果的数据框(data frame)外,还可以...
这个分值叫“RIN”值(“RNA Integrity Number”),即RNA的完整度评分值。RIN值最高是10分,最低是0分。 Illumina公司推荐用RIN值在8.0以上的RNA进行建库和测序。测序完成之后,就可以进行数据分析了。 RNA-seq数据分析 判断测序的质量 分析的第一步,一般是先把测到的RNA片段,先mapping(比对)到基因组上。在比对完...
RNA-seq数据差异表达分析 黑石物理服务器 分析转录组测序数据时,通常使用p值/q值和foldchange值来衡量基因的差异的表达水平。目前,大家普遍都认为转录组数据的read counts(即基因的reads数量)符合泊松分布。几个用于差异表达分析的R包如DESeq2和edgeR等,都是基于负二项分布模型设计的,整体而言结果相差不大。Limma包也...
接下来我们继续多时间点样本实战分析流程的第二部分:聚类和富集分析。第一部分的完整流程请参照:RNA-Seq 分析流程:多时间点样本分析实战(一) 多时间点数据的聚类 前面我们发现70% 的基因是差异表达的,几乎所有通路都受到处理的影响。因此,分析流程的下一步是根据基因表达对处理的动态反应进行聚类。
我们可以简单的把这张图理解为2个样本的RNAseq结果关联度散点图。X,Y轴分别是两个样本,每个点代表一个基因在两个样品中 FPKM 的对数值(FPKM是RNAseq中衡量基因表达高低的常用数值)。从这张图可以观察,偏离对角线的点越多,说明样品表达量的相关性越低,重复性越差;偏离对角线的点越少,则说明样品间表达量的相...
让我们看看他的表演以下是正文收到大佬的作业,第一次投稿。大佬的题目如下:通过一篇science文章,理解两种RNA-seq表达矩阵在数据分析的时候是否相同(大佬的意思是通过PCA和heatmap来看一下)。 稍微介绍 一下背景 Counts值 对给定的基因组参考区域,计算比对上的read数,又称为raw count(RC),也就我通常说的相对原始...
RNA-seq中,对差异表达基因进行KEGG富集分析,可以通过散点图展示。此图中,KEGG富集程度通过Rich factor、qvalue和富集到此通路上的基因个数来衡量。 横坐标是Rich factor,数值越大表示富集程度越大。Rich factor=位于该pathway term下的差异表达基因数/位于该pathway term...
如果是定性分析,这可以选用 反转录pcr 如果是定量分析,可以用western印记来检测RNA量,或提取全RNA用电泳分析,或在所分析序列中加入荧光标签,观察所表达蛋白的荧光强度