聚类分析有很多应用,比如说:我们可以分析疾病的亚型,还可以通过对多个基因在特定疾病当中的表达倾向性来找出可能的、新的、诊断用的Biomark。 GO分析: GO分析是RNA-seq分析中非常常用的一种分析。GO是Gene Ontology的缩写,Gene Ontology是一个国际化的、基因功能分类体系。这个体系用一整套动态更新的标准词汇和严格定...
你只要记得,deseq2只是一个差异分析的软件,就是类似于做方差分析的软件一样,只不过其通过log变换和中位数挑选来排除异常值的影响。 deseq2矫正的原理可以看原北卡罗来纳大学教堂山分校的Josh Starme的StatQuest系列视频教程https://statquest.org/video-index/,里边的统计学原理值得学习,也有人将这个系列的视频整理...
批次效应是RNA-seq分析的一个重要问题,仅由批次效应就能导致显著的表达差异。Hicks SC, et al., bioR...
在RNA-seq项目中,常见的结果包括:火山图、韦恩图、聚类热图、log2(ratios)折线图、有向无环图、散点图、代谢通路图、蛋白互作图等。今天我们先来一起学习火山图、韦恩图、聚类热图和折线图的解读。 1、火山图 RNA-seq中,火山图(Volcano Plot)显示了两个重要的指标:fold change和校正后的p value,利用T检验分...
基于这些结果,作者建议在分析大量样本的RNA-seq数据时应当使用Wilcoxon秩和检验。 来源:假面骑士Revice中配版 相信对RNA-seq分析熟悉的朋友们看到这样一篇文章都会大吃一惊吧,DESeq2和edgeR都是经过了众多benchmark study的考验和实践验证的优秀软件,这样的结果显然颠覆了大家平日的认知。然而,在听从作者给出的建议之前...
RNAseq,即通过高通量测序技术进行转录组测序分析技术,作为研究RNA的表达水平以及表达差异基因的应用,在过去的十几年内迅速发展。而今,RNAseq在转录本变异检测,基因融合检测,可变剪切检测等场景均有大规模的应用。转录本变异检测,是指通过比较样本RNA序列和参考基因组对应序列,来寻找单碱基多态性和小片段的插入缺失,其...
RNA-seq中,对差异表达基因进行KEGG富集分析,可以通过散点图展示。此图中,KEGG富集程度通过Rich factor、qvalue和富集到此通路上的基因个数来衡量。 横坐标是Rich factor,数值越大表示富集程度越大。Rich factor=位于该pathway term下的差异表达基因数/位于该pathway term...
也就是说,只需要 2 (实验条件) * 3(重复)个 RNAseq 的样本,我们就可以做出一张 Cancer Cell 的主图了,YY一下,有没有很激动呢~ 做转录组分析时,大家通常会先筛选差异表达基因,然后再对这些差异表达基因进行功能富集分析。可能不少小伙伴会发现这种情况,就是因为差异基因过少而富集目标/相关的功能/通路,或者...
统一用DEseq2进行差异分析,当然也可以用edgeR。基本任务是得到差异分析结果,进阶任务是比较多个差异分析...