B是表示基因表达差异的贝叶斯统计量。这里我们基本上只用到logFC、P.value和adj.P.Val,其它可以不用管。通常我们认为|logFC|>=1,P值<0.05就算是一个差异表达基因,当然,这个具体情况具体分析,不一定按照这个标准筛选。 之后就是做差异基因表达专属的火山图了。这里先把p值转换为负对数形式,再用ggplot就可以画出...
Limma用于处理基因表达芯片数据,edgeR也有一部分功能依赖于limma包。 Limma采用经验贝叶斯模型( Empirical Bayesian model)使结果更稳健。进行差异分析时常用limma。虽然它是针对芯片数据开发的,但也有limma-voom可以分析转录组数据 在处理RNA-Seq数据时,raw read count先被转成log2-counts-per-million (logCPM),然后对...
(9)基因差异表达计算 可参考说明文件:https://bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html 1.执行命令R 进入R环境,并读取差异表达分析包 DESeq2 Rlibrary(DESeq2) 2.读取短片段比对的基因计数文件 AP53_counts.txt 和归一化因子文件 AP53_rpkmFactor.txt,并查看其内容 cu...
RNA-Seq归一化算法的意义: 基因表达量归一化:在高通量测序过程中,样品间在数据总量、基因长度、基因数目、高表达基因分布甚至同一个基因的不同转录本分布上存在差别。因此不能直接比较表达量,必须将数据进行归一化处理。 RNA-seq差异表达分析的一般原则 1)不同样品的基因总表达量相似 2)上调差异表达与下调差异表达...
Bulk RNA-seq 分析的一个重要任务是分析差异表达基因,我们可以用omicverse包 来完成这个任务。对于差异表达分析而言,首先,我们可以先将 gene_id 改为 gene_name。其次,当我们的数据集存在批量效应时,我们可以使用 DEseq2的 SizeFactor 对其进行归一化,并使用 wilcoxon 的 t 检验来计算基因的 p 值。在这里,我们...
DESeq2是一个用于分析基因表达差异的R包,具体操作姚在R语言中运行 1.R语言安装DESeq2 代码语言:javascript 复制 >source("https://bioconductor.org/biocLite.R") >biocLite("DESeq2") 2.载入基因表达量文件,添加列名 代码语言:javascript 复制 > setwd("C:\\Users\\18019\\Desktop\\counts") > options(...
本文以从NCBI SRA下载的开源RNA-seq数据为例,演示基于 tophat2 和 cufflinks 的基因表达量差异分析。 Part.1 SRA数据下载与表达量分析所需软件下载安装 SRA数据简介 随着高通量测序的发展,测序价格不断下降,测序通量也不断提高,使很多实验室,可以获得大批量的数据,但是...
【1】Bulk RNA-seq和scRNA-seq数据收集与预处理 文献解读 TCGA、GEO公共数据下载 差异表达基因分析 富集分析 【翰佰尔生物】, 视频播放量 2573、弹幕量 0、点赞数 99、投硬币枚数 53、收藏人数 372、转发人数 31, 视频作者 翰佰尔生物, 作者简介 官网:henbio.com/tools |
简介:RNA-seq数据分析二:DESeq2 筛选差异基因 首先DESeq2在R-studio上的安装非常让人自闭,具体可参考徐洲更老师的R语言安装介绍https://www.bilibili.com/video/BV19p4y1i7Zb?from=search&seid=2717757288900359126,我认为最关键的问题是要用BioManager来安装,就像conda装软件也要写一个conda install -c bioconda ...
转录组测序是最常用的组学实验,对全谱基因定量,找到差异表达基因。RNAseq涉及到原始数据,数据质控,基因组比对,差异基因鉴定,差异基因功能富集分析,重要基因如转录因子激酶的靶基因预测等,我们用10讲的时间,…