在RNA-Seq下游的可视化分析过程中,除了火山图,通过热图展示整体的结果内容同样是一个十分常见的内容。在此,可以使用plot_heatmap.expr()函数来进行热图的绘制。而且,plot_heatmap.expr()函数主要基于ComplexHeatmap包的内容来进行构建,得到的图形还是比较美观的。 首先,读取测序样本的Count数据以及样品的相关处理信息。
在RNA-seq项目中,常见的结果包括:火山图、韦恩图、聚类热图、log2(ratios)折线图、有向无环图、散点图、代谢通路图、蛋白互作图等。今天我们先来一起学习火山图、韦恩图、聚类热图和折线图的解读。 1、火山图 RNA-seq中,火山图(Volcano Plot)显示了两个重要的指标:fold change和校正后的p value,利用T检验分...
三.上述几个标准都符合后,我们就可以开始对数据进行分析了,首先是看你的分析目的。 RNA-seq可以做的大都是相关性研究,通过比较找到一些差异,从基因表达上给你的课题指明一定的方向,一般来说,单独做RNA-seq,有如下几个常见的目的。 1. 如果你的样本是实验组与对照组的关系,那么寻找差异基因是关键,这可以通过RNA...
为⼤家介绍RNA-seq结果第⼀部分常见的图⽰,这些图反映了测序的质量。有了质量的保证,后续 的数据分析才有价值。接下来,便是”看图说话“时间!Pat1⽤于展⽰RNA-seq测序原始数据质量的图⽰ 当⼆代测序的原始数据拿到⼿之后,第⼀步要做的就是看⼀看原始reads的质量。如果⼀开始质 量就不...
本期,小编继续“看图说话”,一起看看RNA-seq基础分析里的图示都反映了哪些内容吧。 1 主成分分析图(PCA图)---用RNA测序结果体现样本聚类 主成分分析图是生信分析中最朴实无华的,因为谁都能看的懂。我们不需要操心X,Y轴的主成分到底是什么,只要明白每个样本都被一个2维坐标(X,Y)定位到了这张图上。对于基...
RNA-seq中,对差异表达基因进行KEGG富集分析,可以通过散点图展示。此图中,KEGG富集程度通过Rich factor、qvalue和富集到此通路上的基因个数来衡量。 横坐标是Rich factor,数值越大表示富集程度越大。Rich factor=位于该pathway term下的差异表达基因数/位于该pathway term...
RNA-seq中,对差异表达基因进行KEGG富集分析,可以通过散点图展示。此图中,KEGG富集程度通过Rich factor、qvalue和富集到此通路上的基因个数来衡量。 横坐标是Rich factor,数值越大表示富集程度越大。Rich factor=位于该pathway term下的差异表达基因数/位于该pathway term下的所有有注释基因数。
RNA-seq数据分析 判断测序的质量 分析的第一步,一般是先把测到的RNA片段,先mapping(比对)到基因组上。在比对完后,可以先看一下,有多少RNA片段是在靠近基因的5'端位置,又有多少片段在是靠近基因的3'端位置。 上图就是把所有的基因,都按其外显子的长度拉直,然后归一化到“0 - 100”的长度。看比对上的片段...
RNA-seq 详细教程:结果汇总与提取(11) 学习目标 评估每次比较产生的差异表达基因的数量 从每次比较中构建包含重要基因的 R 对象 1. 汇总 为了汇总结果,DESeq2中一个方便的函数是summary()。它与用于检查数据帧的函数同名。当使用DESeq结果表作为输入调用此函数时,将使用默认阈值padj < 0.1汇总结果。但是,由于...
RNA-seq中,对差异表达基因进行KEGG富集分析,可以通过散点图展示。此图中,KEGG富集程度通过Rich factor、qvalue和富集到此通路上的基因个数来衡量。 横坐标是Rich factor,数值越大表示富集程度越大。Rich factor=位于该pathway term下的差异表达基因数/位于该pathway term下的所有有注释基因数。