1.DESeq2 DESeq2是目前最常用的差异分析R包。除了可以导入counts外,如果上游使用salmon,DESeq2官方还给出了直接导入tximport生成的txi对象的方法。counts与txi的获取见RNA-seq入门实战(三):在R里面整理表达量counts矩阵和RNA-seq入门实战(二):上游数据的比对计数——Hisat2+ featureCounts 与 Salmon 代码语言:javasc...
举个例子,我们想知道A基因表达的高低在某种肿瘤中影响了哪些已知的通路(pathway),这时我们对一批病人的肿瘤进行取材,通过转录组(RNA-seq)测序,再按照A基因mRNA水平高低进行分组,接着使用基因富集分析便可以预测A基因可能参与了哪些通路。 用于进行基因富集分析的通路的信息,包含通路名称和组成通路的基因,储存在一些数据...
RNA-seq入门实战(一):上游数据下载、格式转化和质控清洗 RNA-seq入门实战(二):上游数据的比对计数——Hisat2+ featureCounts 与 Salmon RNA-seq入门实战(三):从featureCounts与Salmon输出文件获取counts矩阵 RNA-seq入门实战(四):差异分析前的准备——数据检查 RNA-seq入门实战(五):差异分析——DESeq2 edgeR limma...
到此,我们完成了RNAseq原始数据的下载、格式转化和质控清洗步骤,得到了经过质控后存放于clean文件夹下的fastq文件,接下来就可以利用这些cleaned fastq文件进行下一步的比对、计数(hisat2+feature_counts 或 salmon),最终得到我们想要的counts文件 参考资料 20160410 测序分析——使用 FastQC 做质控 - 知乎 (zhihu.com)...
接下来我们继续多时间点样本实战分析流程的第二部分:聚类和富集分析。第一部分的完整流程请参照:RNA-Seq 分析流程:多时间点样本分析实战(一) 多时间点数据的聚类 前面我们发现70% 的基因是差异表达的,几乎所有通路都受到处理的影响。因此,分析流程的下一步是根据基因表达对处理的动态反应进行聚类。
RNA-seq分析:从软件安装到富集分析详细过程 RNA-seq实战 第二次RNA-seq实战总结(2)-数据下载并进行数据处理 感谢各位大佬! 一、软件安装准备 1.原始数据下载软件Aspera 2.解压文件SRA-toolkit 3.比对软件hisat2 4.基因表达量软件htseq-count (这是一个Python包,需要在Python2的环境下下载) ...
承接上节:RNA-seq入门实战(四):差异分析前的准备——数据检查,以及RNA-seq入门实战(五):差异分析——DESeq2 edgeR limma的使用与比较 本节概览:1.获取DEG结果的上下调差异基因2.bitr()函数转化基因名为entrez ID3.利用clusterProfiler进行KEGG与GO富集4.用enrichplot进行富集结果可视化:pathview goplot barplot do...
承接上节:RNA-seq入门实战(四):差异分析前的准备——数据检查,以及RNA-seq入门实战(五):差异分析——DESeq2 edgeR limma的使用与比较 我们《生信技能树》这些年有很多关于WGCNA的实战细节建议分享,见: 一文学会WGCNA分析 一文看懂WGCNA 分析(2019更新版)(点击阅读原文即可拿到测序数据) ...
承接上节RNA-seq入门实战(三):在R里面整理表达量counts矩阵和RNA-seq入门实战(二):上游数据的比对计数——Hisat2+ featureCounts 与 Salmon 在进行差异分析前需要进行数据检查,保证我们的下游分析是有意义的。 以下展示了样本hclust 图、距离热图、PCA图、前500差异性大的基因热图、相关性热图(选取了500高表达基因...
RNA-seq分析流程之数据质控多组学之家 立即播放 打开App,流畅又高清100+个相关视频 更多564 -- 2:31 App RNA-seq流程-转录本组装与输出表达矩阵 3561 -- 1:47:46 App 第六课 马尔可夫链蒙特卡洛方法 1789 -- 3:31:25 App 【R语言教程】R语言入门到实战,这一个视频就够了!小白轻松入门,附源码+...