Python 读写Excel 可以使用 Pandas,处理很方便。但如果要处理 Excel 的格式,还是需要 openpyxl 模块,旧的 xlrd 和 xlwt 模块可能支持不够丰富。Pandas 读写 Excel 主要用到两个函数,下面分析一下 pandas.read_excel() 和 DataFrame.to_excel() 的参数,以便日后使用。 1. pandas.read_excel 代码语言:javascript...
直接使用pd.read_excel(r"文件路径"),默认读取第一个sheet的全部数据 实际上就是第一个参数:io,支持str, bytes, ExcelFile, xlrd.Book, path object, or file-like object 2.sheet_name(str, int, list, None, default 0) str字符串用于引用的sheet的名称 int整数用于引用的sheet的索引(从0开始) 字符串...
9.engine(str, default None) 可以接受的参数有“ xlrd”,“ openpyxl”或“ odf”,用于使用第三方的库去解析excel文件。 10.converters(dict, default None) 对指定列的数据进行指定函数的处理,传入参数为列名与函数组成的字典。key 可以是列名或者列的序号,values是函数,可以def函数或者直接lambda都行。 先读取...
# 默认情况下,重复列名会被重命名df=pd.read_excel('example.xlsx',mangle_dupe_cols=True)print(df)# 如果设置为False,重复列名将导致异常df=pd.read_excel('example.xlsx',mangle_dupe_cols=False) 1. 2. 3. 4. 5. 6. 重复的列名通常会导致数据处理中的混乱,因此在创建Excel文件时,应尽量避免列名重复。
Pandas是一个基于Python的数据分析库,提供了丰富的数据处理和分析工具。其中的read_excel函数是Pandas库中用于读取Excel文件的函数之一。 read_excel函数可以用于读取Excel文件中的数据,并将其转换为Pandas的DataFrame对象,以便进行后续的数据处理和分析操作。在读取Excel文件时,可以通过设置参数来控制只读取前几行的数据。
usecols参数的使用方法 1. 默认情况:读取所有列 在不指定usecols参数时,read_excel()会默认读取所有列。 importpandasaspd# 读取所有列df=pd.read_excel('example.xlsx')print(df) 1. 2. 3. 4. 5. 2. 使用字符串指定列 通过字符串指定列名,usecols会读取与字符串匹配的列。
values 相当于 excel 透视表的值区域。 columns 相当于 excel 透视表的字段区域。 放入index 与 columns 的字段,一般是分类的字段,比如:班级,性别。 放入values 的字段,一般是连续值,比如:分数,销售额。如果是类别的值,一般会用于统计个数。 上述3个参数都可以传入列表,以表示处理多个字段。
二、.read_excel() 参数 这里只用.read_excel()作为例子。 支持从本地文件系统或URL读取的xls,xlsx,xlsm,xlsb、odf、ods、odt文件扩展名。 支持读取单一sheet或几个sheet。 函数用法如下: read_excel(io, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False, dtype: 'Dtyp...
首先是pd.read_excel的参数:函数为: 复制pd.read_excel(io, sheetname=0,header=0,skiprows=None,index_col=None,names=None, arse_cols=None,date_parser=None,na_values=None,thousands=None, convert_float=True,has_index_names=None,converters=None,dtype=None, true_values=None,false_values=None,engin...
进行数据处理的第一步就是Python数据读取! 但是你可能没想到,在进行数据读取的同时,我们其实可以配合相关参数做很多事儿,这对于后续的数据处理都是极其有帮助。 read_excel()函数和read_csv()函数,在参数上面有很多相同点,因此我就以read_excel()函数为例,进行详细的说明。