rankab与ranka rankb的关系 我们先证明(A+B)X=0可以推出AX=0且BX= 0,0=A(A+B)X=A^2X,由于rankA^2=rankA且任意AX=0的解为A^2X=0的解,我们有AX=0与A^2X=0的解空间相等,于是A^2X=0推出AX= 0,此时当然有BX= 0. 为了估计rank(A+B)的值,我们由上面的探索得到启示去估计(A+B)X=0的解...
故AB=(a1B,a2B……amB)的极大无关组必定在a1B,a2]B……ar中,也就是说AB的极大无关组中的向量不超过r个,即rank(AB)<=rank(A)类似的可以证明rank(AB)<=rank(B)所以rank(AB)<=min(rankA,rankB)
答案 B 即:矩阵A等价于矩阵B 或 矩阵A可以通过初等变换,化为矩阵B ,或矩阵B可以通过初等变换,化为矩阵A;rankA=rankB 即:矩阵A的秩 等于 矩阵B的秩 ,或矩阵A 与 矩阵B 有相同的行秩(或列秩);或矩阵A 与 矩阵B 的极大无关 行(列)向量组的个数相同的.定理表明:以上两个命题是等价的 ...
rankA=rankB 即:矩阵A的秩 等于 矩阵B的秩 ,或 矩阵A 与 矩阵B 有相同的行秩(或列秩);或 矩阵A 与 矩阵B 的极大无关 行(列)向量组的个数相同的。定理表明:以上两个命题是等价的 。
4.设 rankA=r_1 ,rankB = r2,则存在可逆矩阵P与Q,(i=1,2),使得 2 PIAQ1= = A1, P2BQ2 = =B 因为 (P1 P2)( (A B)(Q1 Q2)=A1 B1 且 P_1⊗P_2 与 Q_1⊙Q_2 为可逆矩阵,所以 rank(AB)=rark(A_1B_1)=r_1r_2 反馈...
求证rank(A,B)<=rankA+rankB AB是相同行数的矩阵(A,B)是A,B并排组成的矩阵... A B是相同行数的矩阵 (A,B)是A,B并排组成的矩阵 展开 1个回答 #热议# 职场上受委屈要不要为自己解释?尹六六老师 2014-12-03 · 知道合伙人教育行家 尹六六老师 知道合伙人教育行家 采纳数:33776 获赞数:...
正方向,如果b^2=b=ba,a^2=a=ab,rank(b)= rank(ba)≤ ranka (sylvester's rank inequality),rank(a)=rank(ab)≤ rank(b)这说明 rank(a)=rank(b)反方向,如果rank(a)=rank(b),因为a^2=a=ab,(b)a=ba^2=(ba)a,所以 b=ba,b^2=(ba)^2=ba(ba)=bab=b(ab)=ba=b,所以 b...
2353381a 可逆矩阵 9 想了好久不会啊 求好人相助 N_Cluster 可逆矩阵 9 Rank(A+B)<= Rank(A+B,B) = Rank(A,B) <= Rank(A) + Rank(B) 2353381a 可逆矩阵 9 厉害!谢谢! 暗夜星歌 初等矩阵 4 没严格说明相等的存在啊 刀锋why偏冷me 对角矩阵 6 同济版书上例题 登录...
如果B^2=B=BA, A^2=A=AB, rank(B)= rank(BA)≤ rankA (Sylvester's rank inequality), rank(A)=rank(AB)≤ rank(B) 这说明 rank(A)=rank(B) 反方向, 如果rank(A)=rank(B), 因为A^2=A=AB,(B)A=BA^2=(BA)A,所以 B=BA,B^2=(BA)^2=BA(BA)=BAB=B(AB)=BA=B,所以...
解析如下:设有矩阵A,B,C。C=AB 有rank(C)≤min{rank(A),rank(B)} (AT)和A有相同的秩,所以rank((A)TA)≤min{rank(AT),rank(A)}=rank(A)。线性代数在数学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位。在计算机广泛应用的今天,计算机...