scale_color_manual(values = mycol) + scale_fill_manual(values = mycol) p #or基于compartment或gender: p1<- ggplot(data = UMAP, aes(x = umap_1, y = umap_2)) + geom_point(aes(color = compartment), size = 0.5, alpha = 0.8) + mytheme+ theme_dr(xlength = 0.2, ylength = 0.2, ...
geom_boxplot(aes(x = Y, y = 每月话费, fill = Y)) + scale_fill_manual(values = c("lightyellow","lightpink")) + labs(x='是否恋爱',y='每月话费') + theme(text = element_text(family='STHeiti')) 1.1.7 是否单身 vs 成绩水平 par(family = "STHeiti") #设置字体 ggplot(mydata) ...
plot_5 = ggplot(dat,aes(class,value,fill = class)) + geom_boxplot(na.rm = T) + # scale_fill_viridis(discrete = TRUE, alpha=0.6) + stat_summary(fun.y=mean, na.rm=T, geom="point", shape=21, size=2, fill="red",color="red") + #geom_jitter(color="black", size=0.4, alph...
方案 在一个新的 R 会话中使用 search() 可以查看默认加载的包。 search() #> [1] ".GlobalEnv" "package:ellipse" #> [3] "package:Cairo" "package:grid" #> [5] "package:dplyr" "package:scales" #> [7] "package:Rmisc" "package:plyr" #> ...
geom_point(aes(x=service,y=-10,color=year,fill=year),size=4)+ geom_text(aes(service,share+1,label=paste0(share,"%"),group=year), position=position_dodge(width=0.9),size=3)+ scale_fill_manual(values=c(`2020` ="red3", `2021` ="black")) + ...
在绘制全局地图的命令中添加scale_fill_manual()函数给地图填色,配色方案可以参考: 代码语言:javascript 复制 fig1<-ggplot()+geom_sf(data=CHINA,aes(fill=factor(colour)))+## 填色scale_fill_manual("class",values=c("#9CEED3","#79CBC2","#5EA9AC","#4B8793","#3C6777"),breaks=c("0~200"...
在geom_pointrange()中,我们必须分别定义fill(点)和color(线)美学:
p0<- ggplot(mpg, aes(class))+geom_bar(aes(fill=drv)) # manual # 主要是values参数指定颜色 p0 p0+ scale_fill_manual(values=c("red","blue","green"))# 直接指定三个颜色 p0+ scale_fill_manual(values=c("4"="red","r"="blue","f"="darkgreen"))# 对应指定 ...
p0 <- ggplot(mpg, aes(class))+geom_bar(aes(fill=drv)) # manual # 主要是values参数指定颜色 p0 p0 + scale_fill_manual(values=c("red", "blue", "green")) # 直接指定三个颜色 p0 + scale_fill_manual(values=c("4" = "red", "r" = "blue", "f" = "darkgreen")) # 对应指定 ...
scale_fill_manual(values = color) 左右滑动查看更多 01 02 03 04 结果大多符合预期。根据GKtau值,预测因子之间的关联最小。这正是我们想要的,以避免共线性现象。 然而,平行坐标仍然显示了一些有趣的点。例如,年龄组与 "十年健康发展 "结果之间的关联很有意思。较低的年龄组在TenYearCHD==TRUE中的参与度很低...