python from pyquaternion import Quaternion # 定义欧拉角(以弧度为单位) roll = 0.5 #绕X轴旋转的角度 pitch = 1.5 #绕Y轴旋转的角度 yaw = -1.5 #绕Z轴旋转的角度 # 创建四元数 quaternion = Quaternion.from_euler_angles(roll, pitch, yaw) # 输出四元数 print(quaternion) 在这个示例中,Quaternion...
from_float_array([1,2,3,4]) # 生成的都是单位四元数 q3 = quaternion.from_rotation_matrix([[1,2,3],[1,2,3],[1,2,3]]) q4 = quaternion.from_euler_angles([1,2,3]) print(q1,q2,q3,q4) 四元数叉乘 (w1,x1,y1,z1)⊗(w2,x2,y2,z2)=(w1w2−x1x2−y1y2−z1z2,...
pip install numpy-quaternion 安装完成后,就可以在Python脚本中导入并使用它了。 基础用法 创建四元数 首先,来看看如何创建一个四元数。四元数由一个实部和三个虚部组成,可以通过多种方式创建: importnumpyasnpfromnumpy_quaternionimportquaternion# 从欧拉角创建四元数euler_angles=np.array([0.1,0.2,0.3])q1=qu...
q1 = np.quaternion(1,2,3,4) q2 = quaternion.from_float_array([1,2,3,4]) # 生成的都是单位四元数 q3 = quaternion.from_rotation_matrix([[1,2,3],[1,2,3],[1,2,3]]) q4 = quaternion.from_euler_angles([1,2,3]) print(q1,q2,q3,q4) 1. 2. 3. 4. 5. 6. 7. 四元数...
```python from numpy import Quaternion q = Quaternion.from_euler_angles(angle1, angle2, angle3, degrees=True)```这将创建一个四元数,表示按照x-y-z顺序旋转angle1、angle2和angle3度。需要注意的是,角度的单位默认为弧度,可以使用degrees=True来指定单位为角度。除了x-y-z顺序,还有其他常见的旋转...
quaternion.as_euler_angles(q) クォータニオンからオイラー角に変換.オイラー角の変換順などはドキュメント参照 quaternion.from_euler_angles(alpha_beta_gamma, beta=None, gamma=None) オイラー角からクォータニオンに変換.オイラー角の変換順などはドキュメント参照 quaternion.rotate_vectors...
Finally, it is possible to derive the Euler angles from a quaternion using as_euler_angles, or create a quaternion from Euler angles using from_euler_angles— though be aware that Euler angles are basically the worst things ever.1 Before you complain about those functions using something other...
to_rotation_matrix,from_rotation_matrix to_transformation_matrix(for non-unit quaternions) to_axis_angle,from_axis_angle to_euler_angles,from_euler_angles(though using Euler angles is almost always a bad idea) to_euler_phases,from_euler_phases(see above) ...
qi) return res def _euler_to_q(self, euler): """ Create q array from euler angles :param euler: array [roll, pitch, yaw] in rad :returns: array q which represents a quaternion [w, x, y, z] """ assert(len(euler) == 3) phi = euler[0] theta = euler[1] psi = euler[2...
andfrom_rotation_vector, and for spherical coordinates usingas_spherical_coordsandfrom_spherical_coords. Finally, it is possible to derive the Euler angles from a quaternion usingas_euler_angles, or create a quaternion from Euler angles usingfrom_euler_angles— though be aware that Euler angles ...