```python import math def quaternion_to_euler(q): #计算旋转矩阵的元素 sinr_cosp = 2 * (q.w * q.x + q.y * q.z) cosr_cosp = 1 - 2 * (q.x**2 + q.y**2) roll = math.atan2(sinr_cosp, cosr_cosp) sinp = 2 * (q.w * q.y - q.z * q
pip install numpy-quaternion 安装完成后,就可以在Python脚本中导入并使用它了。 基础用法 创建四元数 首先,来看看如何创建一个四元数。四元数由一个实部和三个虚部组成,可以通过多种方式创建: importnumpyasnpfromnumpy_quaternionimportquaternion# 从欧拉角创建四元数euler_angles=np.array([0.1,0.2,0.3])q1=qu...
#Euler 描述 创建一个先围绕 Z 轴旋转 z 度、再围绕 X 轴旋转 x 度、最后围绕 Y 轴旋转 y 度的旋转(注意顺序)。注意:如果该欧拉旋转出现万向节锁,会导致四元数返回的EulerAngle异常 参数 参数名数据类型说明 xfloat围绕x轴旋转的角度 yfloat围绕y轴旋转的角度 ...
Abstract. The quaternions are members of a noncommutative division algebra first invented by William Rowan Hamilton. The idea for quaternions occurred to him while he was walking along the Royal Canna OpenCascade Quaternion Euler angles Rotation ...
euler) elif self._dcm is not None: # get q from DCM self._q = self._dcm_to_q(self.dcm) return self._q def __getitem__(self, index): """Returns the quaternion entry at index""" return self.q[index] @q.setter def q(self, q): """ Set the quaternion :...
I just realized that you can read the source code of the BVH importer of Blender, if you have confirmed that your code is right, there is another thing you may forget to setup, you need to setup the rotation mode for each joint from 'Quaternion(WXYZ)' to 'ZXY Euler’ in pose mode...
Euler angles are pretty muchthe worst things everand it makes me feel bad even supporting them. Quaternions are faster, more accurate, basically free of singularities, more intuitive, and generally easier to understand. You can work entirely without Euler angles (I certainly do). You absolutely ...
Unity:Quaternion(四元数) (一)四元数理解四元数左乘向量,表示将该向量按照四元数表示的角度旋转。 例如:Vector3point = new Vector3(0,0,10... *=Quaternion.Euler(0,1,0); —可使物体沿自身坐标Y轴旋转 this.transform.Rotate(Vector3eulerAngles); —内部就是使用四元数相乘实现 ...
Euler angles to Quaternion Conversion - Allowed rotations sequences: xyz, xzy, yxz, yzx, zxy, zyxEuler Angles To Quaternion Conversion for six basic sequence of rotations around X(Roll),Y(Pitch) and Z(Yaw) axis. Allowed Sequences: xyz, xzequences:zx, zxy
fromcommon.utils.mcmathimportQuaternion newQuaternion=Quaternion.Euler(30,15,45)# 创建一个先围绕z轴旋转45°、再围绕x轴旋转30°、最后围绕y轴旋转45°的旋转 #Dot 描述 两个旋转的点积。 点积是一个浮点值,它等于两个旋转对应分量之积求和。