Q学习(Q-Learning)是一种强化学习算法,它属于无模型预测算法,用于解决马尔可夫决策过程(MDP)问题。Q学习算法的核心思想是通过学习一个动作价值函数(Q函数),来评估在给定状态下采取某个动作的期望效用。一、基本概念 1. 状态(State):环境的某个特定情况或配置。2. 动作(Action):在给定状态下可以采取的...
下面给出整个Q-learning算法的计算步骤算法1.1(Q-learning算法)Step1给定参数γ和reward矩阵RStep2令Q=0Step 3For each episode:3.1随机选择一个初始的状态s 3.2若未达到目标,状态则执行以下几步 (1)在当前状态的所有可能行为中选取一个行为a (2)利用选定的行为a得到下一个状态s~ (3)按照转移规则公式计算 Q(...
离线学习:Q-Learning 是一种离线学习算法,这意味着智能体可以从过去的经验中学习,而不需要与环境进行实时交互。 收敛性:在有限的状态和动作空间中,Q-Learning 算法可以保证收敛到最优策略。 易于实现:Q-Learning 算法相对简单,易于实现。 缺点: 状态空间大时不适用:当状态空间或动作空间很大时,Q-Learning 算法的...
1.1 Q-learning计算步骤 Q-Learning算法是一种无模型的强化学习技术,用于学习代理在环境中采取动作的最佳策略。在Q-Learning中,我们通常使用两个主要的矩阵来表示和更新信息:奖励矩阵(R)和Q值矩阵(Q)。 奖励矩阵(R) 奖励矩阵是一个表格,其中每一行代表一个状态(State),每一列代表一个动作(Action)。矩阵中的每个...
QLearning是强化学习算法中value-based的算法,Q即为Q(s,a)就是在某一时刻的 s 状态下(s∈S),采取 动作a (a∈A)动作能够获得收益的期望,环境会根据agent的动作反馈相应的回报reward r,所以算法的主要思想就是将State与Action构建成一张Q-table来存储Q值,然后根据Q值来选取能够获得最大的收益的动作。
learning算法可以在迭代的过程中不断更新Q-table,直到Q值收敛为止。在Q值收敛后,智能体可以根据Q-table选择在每个状态下采取的最优行动,从而找到从起点到终点的最短路径。 Q-Learning算法可以应用于多种场景,包括但不限于以下几个示例: 游戏智能体训练:通过Q-Learning算法训练游戏智能体,使其学会在游戏中采取最优的...
Q Learning算法是由Watkins于1989年在其博士论文中提出,是强化学习发展的里程碑,也是目前应用最为广泛的强化学习算法。 Q Learning算法概念: Q Learning算法是一种off-policy的强化学习算法,一种典型的与模型无关的算法,即其Q表的更新不同于选取动作时所遵循的策略,换句化说,Q表在更新的时候计算了下一个状态的最...
Q-learning算法实际上相当简单,仅仅维护一个Q值表即可,表的维数为(所有状态S,所有动作A),表的内容称为Q值,体现该状态下采取当前动作的未来奖励期望。智能体每次选择动作时都会查询Q值表在当前状态下采取何种动作得到的未来奖励可能最多,当然也会添加一些随机性,使智能体可能选择别的可能当前认为未来奖励并不多的动作...
Q--learning中,每个Q(s,a)对应一个相应的Q值,在学习过程中根据Q值,选择动作。Q值的定义是如果执行当前相关的动作并且按照某一个策略执行下去,将得到的回报的总和。最优Q值可表示为Q+,其定义是执行相关的动作并按照最优策略执行下去,将得到的回报的总和,其定义如下: ...
Q-learning 算法:学习动作值函数(action value function)动作值函数(或称「Q 函数」)有两个输入:「状态」和「动作」。它将返回在该状态下执行该动作的未来奖励期望。我们可以把 Q 函数视为一个在 Q-table 上滚动的读取器,用于寻找与当前状态关联的行以及与动作关联的列。它会从相匹配的单元格中返回 Q ...