Q学习(Q-Learning)是一种强化学习算法,它属于无模型预测算法,用于解决马尔可夫决策过程(MDP)问题。Q学习算法的核心思想是通过学习一个动作价值函数(Q函数),来评估在给定状态下采取某个动作的期望效用。一、基本概念 1. 状态(State):环境的某个特定情况或配置。2. 动作(Action):在给定状态下可以采取的...
(3)SARSA算法 (4)比较说明 (5)Q-learning算法源码(以路径规划为例) 写在前面: 本篇总结经典的Model-free算法——Q-learning 和SARSA算法,对Q-learning算法的源码进行了测试和解读! 正文: (1)表格型方法(tabular method) 基本描述: Agent有一张已经训练好的表格,通过查看表格,判断某个状态下选择某个动作,有...
Q-Learning 是之前讨论过的查找表方法中最有趣的一种,它也是 Deep Q Learning 的基础。Q-learning 算法使用一个状态-动作值 Q 表(也称为 Q 值表)。该 Q 表中每个状态有一行,每个动作有一列。每个单元格都包含相应状态-动作对的估计 Q 值。 初始状态下,所有的 Q 值都设置为为零。随着 Agent 与环境互...
Q-learning算法实际上相当简单,仅仅维护一个Q值表即可,表的维数为(所有状态S,所有动作A),表的内容称为Q值,体现该状态下采取当前动作的未来奖励期望。智能体每次选择动作时都会查询Q值表在当前状态下采取何种动作得到的未来奖励可能最多,当然也会添加一些随机性,使智能体可能选择别的可能当前认为未来奖励并不多的动作,...
Q-Learning是一种基于值函数的强化学习算法,这里用该算法解决走迷宫问题。 算法步骤如下: 1. 初始化 Q 表:每个表格对应状态动作的 Q 值。这里就是一个H*W*4的表,4代表上下左右四个动作。 2. 选择动作: 根据 Q 表格选择最优动作或者以一定概率随机选择动作。 3. 执行动
q-learning公式解释q-learning公式解释 Q-learning是一种基于强化学习的算法,用于解决智能体在与环境交互中做出决策的问题。其公式如下: Q(s, a) = Q(s, a) + α(r + γ(max Q(s', a')) - Q(s, a)) 其中,Q(s, a)表示在状态s下采取动作a的策略值(即预期累积回报),α是学习率参数,r是智能...
Q-learning的核心思想是通过不断地更新Q-value来逼近最优价值函数。其更新公式如下: 使用Python实现Q-learning 接下来,我们将使用Python来实现一个简单的Q-learning算法,并应用于一个简单的环境中。 首先,我们需要导入必要的库: 代码语言:javascript 复制
Q-learning是一种基于值迭代的强化学习(Reinforcement Learning, RL)算法,主要用于在给定环境中学习一个策略,使得智能体(agent)能够在与环境交互的过程中获得最大累计奖励。它通过学习一个状态-动作值函数(Q函数)来指导智能体的行为选择,适用于各种离散状态和动作的任务环境。Q-learning在各种应用领域中都有显著表现,...
Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是使用一个Q值函数来估计每个状态动作对的价值。Q值表示在特定状态下采取某个动作所能获得的预期累积奖励。算法通过不断更新Q值函数来优化智能体...
从今天开始逐步介绍常用强化学习算法,从最简单的Q-learning算法开始。简单并不代表不常用,有的简单会是经典,Q-learning算法就是这样的例子。 1 迷宫游戏 假设我们有一个迷宫地图,其中包含多个状态(格子),每个格子可以采取上、下、左、右四个动作进行移动。目标是从起始位置找到迷宫的出口,即到达终点位置。