从理论上讲,本文建立了常规的Q-learning、soft Q-learning和conservative Q-learning之间的联系,而且取得了不错的效果。 五、疑问 我注意到它们训练时采用的batch size为1024,超出常规大小(256),声称是为了训练Gumbel loss的稳定性。但增大batch size本身就会为现有的offline rl算法带来优势,文章好像没有给出这方面的...
3.Q-Learning: 核心思想:通过贝尔曼公式,来迭代Q函数,尝试解决信用分配问题,可以计算出每一个不同的s,a下对最终收益的贡献值。 定义:Q(s,a)函数,表示智能体agent在s状态下采用a动作,并在之后采取的都是最优动作条件下拿到的未来奖励 贝尔曼公式: Q(s,a) = r + \gamma max_{a^{'}}Q(s^{'},a^{...
首先,我们推导出一个连续变量的Q-learning算法,我们称为归一化优势函数 (NAF), 将它作为更常用的策略梯度和评估-决策 (actor-critic) 方法的替代品. NAF表征允许我们将Q-learning经验性重复应用于连续任务,并大极大地提高了一系列模拟机器人控制任务上的表现. 为了进一步提高我们尝试的效率,我们探索了利用已学会的模...
Learning from Delayed Reward 该论文的页面为:http://www.cs.rhul.ac.uk/~chrisw/thesis.html 下载地址为:http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf 论文页面对这篇文章的描述: The thesis introduces the notion of reinforcement learning as learning to control a Markov Decision Process by in...
在最开始的 Double Q-learning算法中,通过随机的赋予每一个 experience 来更新两个 value functions 中的一个 来学习两个value function,如此,就得到两个权重的集合,θθ以及θ′θ′。对于每一次更新,其中一个权重集合用来决定贪婪策略,另一个用来决定其 value。做一个明确的对比,我们可以首先排解 selection 和 ...
本文中我们提出了 conservative Q-learning (CQL) 方法,它旨在通过学习一个保守的 Q 函数来解决这些问题,策略在这个 Q 函数下的期望值是其真实价值期望的下界。我们从理论上证明了 CQL 可以产生当前策略的价值下界,并且它可以被纳入到一个具有理论改进保证的策略学习过程中。在实践中,CQL通过一个简单的 Q-value ...
我们将我们的方法称为 implicit Q-learning (IQL),它易于实现,计算效率高,并且只需要额外训练一个具有非对称 L2 损失的 Critic。IQL 在 D4RL 数据集上表现出 SOTA 的性能,我们还演示了 IQL 在 Offline 初始化后使用 Online 交互实现了很强的 fine-turn 性能...
现在我把env环境设置为从状态A采取动作后,便不能回到状态A的情况,也就是论文——Maxmin Q-learning Controlling the Estimation Bias of Q-learning,中构造的simpleMDP环境,此时再重新测试当Q(A,LEFT)的期望均值为正负时,Q(A,LEFT)对动作价值的估计是否回收敛到期望均值上,还是出现估计偏差。下面展示均值为负的...
Q-learning论文怎么写? 如果你想作为一名深度学习研究生,发表一篇关于Q-learning的论文,可以按照以下步骤进行: 1️⃣ 理解Q-learning的基础知识 📚 首先,你需要深入理解Q-learning的原理和算法。这包括熟悉它的工作原理,了解强化学习的基本概念,例如状态(state)、动作(action)、奖励(reward)等。推荐阅读经典教材...
论文地址: https://papers.nips.cc/paper/3964-double-q-learning.pdf 本论文由DeepMind发表于2015年NIPS的一篇论文,作者Hasselt。 前言: Q-Learning算法由于受到大规模的动作值过估计(overestimation)而出现不稳定和效果不佳等现象的存在,而导致overestimation的主要原因来自于最大化值函数(max)逼近,该过程目标是为了...