1.摘要内容理解: 这篇论文的核心发现是什么? (答案位于“ABSTRACT”小节) 这篇论文的核心发现是关于离线强化学习(Offline Reinforcement Learning, RL)的一个新方法:通过隐式值正则化(Implicit Value Regularization, IVR)来优化学习过程。作者提出了一个称为稀疏Q学习(Sparse Q-Learning, SQL)的新算法,这个算法在处...
学术论文:基于弱连续性的主观Q学习算法的收敛性分析 本文提到了对于弱Feller POMDPs(Partial Observable Markov Decision Processes,部分可观察马尔可夫决策过程)的量化逼近的研究。论文提出了一种基于Q-learning的控制策略,通过将POMDP问题转化为完全可观察的马尔可夫过程,并使用量化方法来近似概率分布。同时,论文还分析...
3.Q-Learning: 核心思想:通过贝尔曼公式,来迭代Q函数,尝试解决信用分配问题,可以计算出每一个不同的s,a下对最终收益的贡献值。 定义:Q(s,a)函数,表示智能体agent在s状态下采用a动作,并在之后采取的都是最优动作条件下拿到的未来奖励 贝尔曼公式: Q(s,a) = r + \gamma max_{a^{'}}Q(s^{'},a^{...
首先,我们推导出一个连续变量的Q-learning算法,我们称为归一化优势函数 (NAF), 将它作为更常用的策略梯度和评估-决策 (actor-critic) 方法的替代品. NAF表征允许我们将Q-learning经验性重复应用于连续任务,并大极大地提高了一系列模拟机器人控制任务上的表现. 为了进一步提高我们尝试的效率,我们探索了利用已学会的模...
Learning from Delayed Reward 该论文的页面为:http://www.cs.rhul.ac.uk/~chrisw/thesis.html 下载地址为:http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf 论文页面对这篇文章的描述: The thesis introduces the notion of reinforcement learning as learning to control a Markov Decision Process by in...
Q-learning论文怎么写? 如果你想作为一名深度学习研究生,发表一篇关于Q-learning的论文,可以按照以下步骤进行: 1️⃣ 理解Q-learning的基础知识 📚 首先,你需要深入理解Q-learning的原理和算法。这包括熟悉它的工作原理,了解强化学习的基本概念,例如状态(state)、动作(action)、奖励(reward)等。推荐阅读经典教材...
本文探讨了2022年6月在arXiv上发布的关于离线强化学习的论文——Mildly Conservative Q-Learning(MCQ),该研究关注当前offline RL算法的保守性问题,认为这限制了值函数的泛化能力。MCQ提出,现有的方法过于保守,如惩罚OOD动作会导致值函数在数据集边缘急剧下降,而策略约束方法依赖于行为策略的质量。MCQ的...
Model-Free RL: Deep Q-Learning 1. DQN 2013: Playing Atari with Deep Reinforcement Learning 2015: Human-level control through deep reinforcement learning 【待补充】 2. DRQN 2015: Deep Recurrent Q-Learning for Partially Observable MDPs 针对DQN的改进工作,主要是引入Recurrent结构来解决POMDP问题。 通过...
本文中我们提出了 conservative Q-learning (CQL) 方法,它旨在通过学习一个保守的 Q 函数来解决这些问题,策略在这个 Q 函数下的期望值是其真实价值期望的下界。我们从理论上证明了 CQL 可以产生当前策略的价值下界,并且它可以被纳入到一个具有理论改进保证的策略学习过程中。在实践中,CQL通过一个简单的 Q-value ...
今天要读一篇 Amy Greenwald 的论文《Correlated-Q Learning》,先记一下论文中的基础概念,然后再去深入解读。 这篇论文的目标是:在 general-sum 马尔可夫博弈中学习均衡策略 纳什均衡: 不同的 action 服从独立概率分布 所有的 agents 都针对另一个概率进行优化 ...