Learning from Delayed Reward 该论文的页面为:http://www.cs.rhul.ac.uk/~chrisw/thesis.html 下载地址为:http://www.cs.rhul.ac.uk/~chrisw/new_thesis.pdf 论文页面对这篇文章的描述: The thesis introduces the notion of reinforcement learning as learning to control a Markov Decision Process by in...
论文提出MetaQNN,基于Q-Learning的神经网络架构搜索,将优化视觉缩小到单层上,相对于Google Brain的NAS方法着眼与整个网络进行优化,虽然准确率差了2~3%,但搜索过程要简单地多,所以才能仅用100GPU days就可以完成搜索,加速240倍。但论文本身是个很初期的想法,可以看到搜索出来的网络结构还是比较简单的,没有残差连接...
论文地址:https://arxiv.org/abs/1611.02167 Introduction 论文提出MetaQNN算法,使用基于强化学习的meta-modeling procedure来自动化CNN结构搭建过程。该方法首先搭建一个全新的Q-learning代理,学习如何发现性能好的CNN结构,发现过程先按顺序选择网络每层的参数,然后对搜索到的网络进行训练和测试,并将测试准确率作为re...
而off-policy的方法如actor-critic和Q-learning虽然采样效率高,但又带来偏差。在ICLR2017会议上,来自剑桥大学的顾世翔(ShixiangGu)和其他来自谷歌和伯克利的研究者们提出了Q-Prop的方法,将on-policy和off-policy的优点结合起来,大大降低了强化学习方法的采样复杂度。并发表论文《Q-PROP:SAMPLE-EFFICIENTPOLICYGRADI...
近日,有一篇发表在arXiv的论文“Deep Learning and the Global Workspace Theory”提出了一个大胆的猜想(或理论)。 两位作者认为, 当下的深度学习已经可以基于一个意识模型,即“全局工作空间理论”(GWT),将处理不同模态转换的神经网络即功能模块,结合为一个系统,从而迈向实现通用人工智能的下一个阶段。总结成公式就...
那么究竟有没有什么灵丹妙药可以缓解自监督模型在下游任务中出现分错类的情况呢? 最近meta AI 的一篇工作研究了自监督模型在下游任务错误分类的原因,并且提出了缓解这一问题的方法,让我们一起来看看吧。 论文标题:Understanding Failure Modes of Self-Supervised Learning 论文链接:https://...
此外,FFCSN 模型还引入了元学习(meta learning)和对抗学习(adversarial learning)来解决训练数据量小的问题。元学习使用了 relation 的思想, 通过学习数据之间的关系来提高模型的泛化能力,而对抗学习在训练时使用生成的「假」特征向量攻击模型分类器来达到扩充数据量的目的。
本文提出了 OvarNet 这一全新模型,OvarNet 基于海量多模态数据预训练的视觉语言模型开发,利用可获得的目标检测和属性识别数据进行 Prompt Learning(提示式学习)。同时,为了进一步获得高度可用的 Zero-shot 识别能力,团队从大规模图文数据中提取细粒度的类别和属性表示,进行弱监督学习。此外,小红书还采用知识蒸馏的方式简化...
论文:TVM: End-to-End Optimization Stack for Deep Learning 论文链接:https://arxiv.org/abs/1802.04799 摘要:可扩展框架,如 TensorFlow、MXNet、Caffe 和 PyTorch 是目前深度学习领域中最流行和易用的框架。但是,这些框架只对窄范围的服务器级 GPU 进行优化,要把工作负载部署到其他平台,如手机、嵌入式设备和专...
近日,清华大学交叉信息院曾坚阳研究组成功开发了从大规模科学文献中提取生物医学实体关系的深度学习模型,相关研究成果《A novel machine learning framework for automated biomedical relation extraction from large-scale literature repositories》...