Q-learning是一个经典的强化学习算法,是一种基于价值(Value-based)的算法,通过维护和更新一个价值表格(Q表格)进行学习和预测。 Q-learning是一种off-policy的策略,也就是说,它的行动策略和Q表格的更新策略是不一样的。 行动时,Q-learning会采用epsilon-greedy的方式尝试多种可能动作。 更新时,Q-learning会采用潜...
其中值函数算法是强化学习的重要算法,1992年提出的Q-learning是值函数算法的典型代表,其中用到的值函数概念影响深远,为后来的很多算法奠定了基础。 (一) Q-学习法概述 如果环境的状态和动作空间离散,且数量少,可以选择Q-Learning算法。 Q学习算法不是已知一个策略去优化它,而是新建一个策略,这个策略用表格的形式表...
这篇教程通俗易懂,是一份很不错的学习理解 Q-learning 算法工作原理的材料。 第一部分:中文翻译 用python实现 QLearning: 1. :给定参数γγ和R矩阵 2. 初始化 Q 3. for each episode: 3.1随机选择一个出事状态s 3.2若未达到目标状态,则执行以下几步 (1)在当前状态s的所有可能行为中选取一个行为a (2)...
Q-Learning是一种在马尔可夫决策过程(MDP)中大放异彩的强化学习算法。它通过更新一个名为Q值的表格,来找到最优策略。📖 基本概念速览 - 状态(State):智能体所处的环境状态。 - 动作(Action):在特定状态下,智能体的选择。 - 奖励(Reward):智能体采取动作后获得的反馈。 - Q值(Q-Value):预期累积奖励的度量。
Q-Learning算法属于model-free型,这意味着它不会对MDP动态知识进行建模,而是直接估计每个状态下每个动作的Q值。然后,通过在每个状态下选择具有最高Q值的动作,来绘制相应的策略。 如果智能体不断地访问所有状态动作对,则Q-Learning算法会收敛到最优Q函数[1]。
Q-learning是一种基于值迭代的强化学习(Reinforcement Learning, RL)算法,主要用于在给定环境中学习一个策略,使得智能体(agent)能够在与环境交互的过程中获得最大累计奖励。它通过学习一个状态-动作值函数(Q函数)来指导智能体的行为选择,适用于各种离散状态和动作的任务环境。Q-learning在各种应用领域中都有显著表现,...
强化学习之路一 QLearning 算法 Q-Learning算法 理论 Q-Learning是一种强化学习算法,用于学习在给定状态下采取不同行动的最佳策略。其公式如下: \(Q(s,a) \leftarrow (1 - \alpha) \cdot Q(s,a) + \alpha \cdot (r + \gamma \cdot \max_{a'} Q(s',a'))\)...
3-Qlearning算法实例解读.mp4是【迪哥谈AI】大模型必备的强化学习教程来了!绝对是2023年讲的最好的强化学习零基础入门到精通完整版教程(含实战源码)的第24集视频,该合集共计46集,视频收藏或关注UP主,及时了解更多相关视频内容。
03 Q-Learning介绍 Q-Learning是Value-Based的强化学习算法,所以算法里面有一个非常重要的Value就是Q-Value,也是Q-Learning叫法的由来。这里重新把强化学习的五个基本部分介绍一下。 Agent(智能体): 强化学习训练的主体就是Agent:智能体。Pacman中就是这个张开大嘴...