Q-Learning算法有一些缺点,比如状态和动作都假设是离散且有限的,对于复杂的情况处理起来会很麻烦;智能体的决策只依赖当前环境的状态,所以如果状态之间存在时序关联那么学习的效果就不佳。 更多文章请关注公重号:汀丶人工智能
Q-learning的核心是Q-table。Q-table的行和列分别表示state和action的值,Q-table的值Q(s,a)Q(s,a)衡量当前states采取actiona到底有多好。 Bellman Equation 在训练的过程中,我们使用Bellman Equation去更新Q-table。 Q(s,a)=r+γ(...
Q-learning是另一值函数近似算法,由Watkins在1989年提出,结合了蒙特卡洛和时差分法。它假设状态和动作是有限的,通过Q表记录每种状态和动作的价值。智能体根据当前状态选择Q值最大的动作。Q-learning适用于模拟环境或迭代快速的场景,但可能在处理时序关联状态时效果不佳。
【强化学习】Q-Learning算法详解 【强化学习】Q-Learning详解 1、算法思想 QLearning是强化学习算法中值迭代的算法,Q即为Q(s,a)就是在某一时刻的 s 状态下(s∈S),采取 a (a∈A)动作能够获得收益的期望,环境会根据agent的动作反馈相应的回报reward r,所以算法的主要思想就是将State与Action构建成一张Q-table...
算法 根据Bellman Equation,学习的最终目的是得到Q-table,算法如下: 外循环模拟次数num_episodes 内循环每次模拟最大步数num_steps 根据当前的state和q-table选择action(可加入随机性) 根据当前的state和action获得下一步的state和reward 更新q-table: Q[s,a] = Q[s,a] + lr*(r + y*np.max(Q[s1,:]) ...
Q-learning直接学习最优策略,而SARSA在探索时学会了近乎最优的策略。 Q-learning具有比SARSA更高的每样本方差,并且可能因此产生收敛问题。当通过Q-learning训练神经网络时,这会成为一个问题。 SARSA在接近收敛时,允许对探索性的行动进行可能的惩罚,而Q-learning会直接忽略,这使得SARSA算法更加保守。如果存在接近最佳路径...
Q-learning直接学习最优策略,而SARSA在探索时学会了近乎最优的策略。 Q-learning具有比SARSA更高的每样本方差,并且可能因此产生收敛问题。当通过Q-learning训练神经网络时,这会成为一个问题。 SARSA在接近收敛时,允许对探索性的行动进行可能的惩罚,而Q-learning会直接忽略,这使得SARSA算法更加保守。如果存在接近最佳路径...
SARSA(State-Action-Reward-State-Action)是一个学习马尔可夫决策过程策略的算法,通常应用于机器学习和强化学习学习领域中。它由Rummery 和 Niranjan在技...
Q-learning直接学习最优策略,而SARSA在探索时学会了近乎最优的策略。 Q-learning具有比SARSA更高的每样本方差,并且可能因此产生收敛问题。当通过Q-learning训练神经网络时,这会成为一个问题。 SARSA在接近收敛时,允许对探索性的行动进行可能的惩罚,而Q-learning会直接忽略,这使得SARSA算法更加保守。如果存在接近最佳路径...