torch.nn.utils.rnn.pad_sequence 与 torch.nn.utils.rnn.pack_padded_sequence 的联系:前者用于将一组不等长的 sequence 通过尾部 padding 为等长的 padded_sequence;后者用于将前者生成的 padded_sequence 打包为PackedSequence对象。 pack_padded_sequence 可以理解为两个步骤 Sort 和 Squeeze。首先将 padded_sequenc...
首先,packed是包装好的的意思;padded是填充的意思;pack有包装、压紧的意思;pad有填充的意思。 pack_padded_sequence即压紧封装填充好的句子 pad_packed_sequence即填充被压紧封装好的句子 示意图: pack_padded_sequence pad_packed_sequence就是上边的那个过程反过来 pack_padded_sequence #官方函数torch.nn.utils.rnn...
torch.nn.utils.rnn.pack_padded_sequence() 这里的pack,理解成压紧比较好。 将一个 填充过的变长序列 压紧。(填充时候,会有冗余,所以压紧一下) 其中pack的过程为:(注意pack的形式,不是按行压,而是按列压) pack之后,原来填充的 PAD(一般初始化为0)占位符被删掉了。 输入的形状可以是(T×B×* )。T是...
更重要的是,这种压制成(packed)的输入数据,pytorch中的RNN,LSTM模型都是认的,只需要把它们直接作为Module的input输入进去,可以得到对应的PackedSequence。 最后,我们可以使用pad_packed_sequence来反向把PackSequence变回padded后的矩阵和序列长度。 >>>fromtorch.nn.utils.rnnimportpad_packed_sequence>>>packed_seq=pa...
在PyTorch中,`pack_padded_sequence` 是一个非常有用的函数,它可以用来提高模型训练的效率,特别是在处理变长序列数据时。这个函数的主要作用是将填充后的序列数据打包,以便循环神经网络(RNN)可以更高效地处理。以下是如何使用 `pack_padded_sequence` 来提高模型训练效率的步骤: ...
但是在使用pack_padded_sequence时有个问题, 即输入mini-batch序列的长度必须是从长到短排序好的, 当mini-batch 中的样本的顺序非常的重要的话, 这就有点棘手了. 比如说, 每个 sample 是个 单词的 字母级表示, 一个mini-batch保存了一句话的 words. 例如:[['p', 'y', 't', 'o', 'r', 'c', '...
print(packed_sequence) 1. 2. 但是pack_sequence这玩意返回的PackedSequence是batch_first=False的,这就让我很不爽,这意味着我的RNN必须是batch_first=False,所以不得不重新定义网络 rnn = nn.RNN(1, 3, batch_first=False) print(rnn(packed_sequence)) # 搞定!
前言 使用 PyTorch 的 PackedSequence 雖然可以較快速的處理長短不一的序列資料,但是用起來有個不方便的地方。就是同一個 batch 裡的資料,長度必須由長到短排列。但是如果是在做
但是pack_sequence这玩意返回的PackedSequence是batch_first=False的,这就让我很不爽,这意味着我的RNN必须是batch_first=False,所以不得不重新定义网络 rnn = nn.RNN(1, 3, batch_first=False) print(rnn(packed_sequence)) # 搞定! 最后,我...
) def forward(self, text, text_lengths): #text = [batch size,sent_length] embedded = self.embedding(text) #embedded = [batch size, sent_len, emb dim] packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths,batch_first=True) packed_output, (hidden...