如果序列是按长度降序排列的,你需要设置 `pack_padded_sequence` 函数中的 `enforce_sorted` 参数为 `True`。这样可以确保函数内部正确处理序列长度信息。 总的来说,`pack_padded_sequence` 是处理变长序列数据的一个强大工具,它与 RNN 层配合使用,可以有效地提高模型的训练效率。 当然可以。以下是一个使用 PyTor...
lstm=nn.LSTM(input_size=2,hidden_size=3)output,(hn,cn)=lstm(packed_seq_batch.float()) 当LSTM模型接收PackedSequence对象后,返回的output也封装在PackedSequence对象中。 此时,我们需要对输出进行解压缩,并填充回我们熟悉的形状。 解压缩 我们调用pad_packed_sequence方法进行解压缩。 padded_output,output_len...
首先,packed是包装好的的意思;padded是填充的意思;pack有包装、压紧的意思;pad有填充的意思。 pack_padded_sequence即压紧封装填充好的句子 pad_packed_sequence即填充被压紧封装好的句子 示意图: pack_padded_sequence pad_packed_sequence就是上边的那个过程反过来 pack_padded_sequence #官方函数torch.nn.utils.rnn...
(sequence_length, batch_size, embedding_size),就是变成一列是一个句子,据说这样可以提高并行处理效率,但是对于我这种新手来说形状有点抽象,所以老老实实用False了。 之后进行pack操作,pack之后变成PackedSequence类型,就能实现上文说的padding位对模型无效的效果了 batch = torch.nn.utils.rnn.pack_padded_sequence...
pack_padded_sequence根据时间步拉平了上面排序后的句子,在每个时间步维护一个数值,代表当前时间步内有多少个批次数据。比如上图右边黄色区域的时间步内,只有3个输入是有效的,其他都是填充。因此说该时间步内的批次数为3。 Python中batch_first不同的取值,压缩的方式有点不同,不过主...
更重要的是,这种压制成(packed)的输入数据,pytorch中的RNN,LSTM模型都是认的,只需要把它们直接作为Module的input输入进去,可以得到对应的PackedSequence。 最后,我们可以使用pad_packed_sequence来反向把PackSequence变回padded后的矩阵和序列长度。 >>>fromtorch.nn.utils.rnnimportpad_packed_sequence>>>packed_seq=pa...
pack_padded_sequence是将句子按照batch优先的原则记录每个句子的词,变化为不定长tensor,方便计算损失函数。 pad_packed_sequence是将pack_padded_sequence生成的结构转化为原先的结构,定长的tensor。 其中test.txt的内容 As they satinanicecoffee shop, he was too nervous to say anything and she felt uncomfortable...
一个PackedSequence对象。 torch.nn.utils.rnn.pad_packed_sequence() 填充packed_sequence。 上面提到的函数的功能是将一个填充后的变长序列压紧。 这个操作和pack_padded_sequence()是相反的。把压紧的序列再填充回来。填充时会初始化为0。 返回的Varaible的值的size是T×B×*,T是最长序列的长度,B是 batch_...
pack_padded_sequence根据时间步拉平了上面排序后的句子,在每个时间步维护一个数值,代表当前时间步内有多少个批次数据。比如上图右边黄色区域的时间步内,只有3个输入是有效的,其他都是填充。因此说该时间步内的批次数为3。 Python中batch_first不同的取值,压缩的方式有点不同,不过主...
2. pack_padded_sequence操作 该操作是将pad过的句子进行压缩,然后送进网络进行训练,避免了无用的数据送入网络; 先来看一下官网的定义: 其中input就是我们上面经过pad后的结果; length就是哥哥元素本来的长度 使用示例: length = [4,3,3] pack= nn.utils.rnn.pack_padded_sequence(pad,length,batch_first=...