unsorted_indices (Tensor, optional) – map:original sequence→PackedSequence 解释 torch.nn.utils.rnn.pad_sequence 与 torch.nn.utils.rnn.pack_padded_sequence 的联系:前者用于将一组不等长的 sequence 通过尾部 padding 为等长的 padded_sequence;后者用于将前者生成的 padded_sequence 打包为PackedSequence对象。
首先,packed是包装好的的意思;padded是填充的意思;pack有包装、压紧的意思;pad有填充的意思。 pack_padded_sequence即压紧封装填充好的句子 pad_packed_sequence即填充被压紧封装好的句子 示意图: pack_padded_sequence pad_packed_sequence就是上边的那个过程反过来 pack_padded_sequence #官方函数torch.nn.utils.rnn...
2. **记录序列长度**:在填充序列之前,记录下每个序列的实际长度,因为这些信息对于 `pack_padded_sequence` 来说是必要的。 3. **调用 `pack_padded_sequence`**:使用填充后的序列和对应的长度列表作为输入,调用 `pack_padded_sequence` 函数。这个函数会创建一个 `PackedSequence` 对象,该对象包含了打包后的序...
packed_sequence = pack_sequence([torch.FloatTensor(i) for i in [a, b, c]]) # packed_sequence是PackedSequence的实例 print(packed_sequence) 1. 2. 但是pack_sequence这玩意返回的PackedSequence是batch_first=False的,这就让我很不爽,这意味着我的RNN必须是batch_first=False,所以不得不重新定义网络 r...
如果你是Pytorch用户,并且要用RNN模型建模,建议直接使用Pytorch提供的PackedSequence来解决这个问题。 torch.nn.utils.rnn.PackedSequence PackedSequence将长度不同的序列数据封装成一个batch,可以直接作为RNN的输入。既然这么好用,那么如何创建PackedSequence呢?Pytorch提供了pack_padded_sequence()方法,用于创建PackedSequence...
这里补充下对Pytorch中pack_padded_sequence和pad_packed_sequence的理解。 当我们训练RNN时,如果想要进行批次化训练,就得需要截断和填充。 因为句子的长短不一,一般选择一个合适的长度来进行截断; 而填充是在句子过短时,需要以 填充字符 填充,使得该批次内所有的句子长度相同。
前言 使用 PyTorch 的 PackedSequence 雖然可以較快速的處理長短不一的序列資料,但是用起來有個不方便的地方。就是同一個 batch 裡的資料,長度必須由長到短排列。但是如果是在做
但是在使用pack_padded_sequence时有个问题, 即输入mini-batch序列的长度必须是从长到短排序好的, 当mini-batch 中的样本的顺序非常的重要的话, 这就有点棘手了. 比如说, 每个 sample 是个 单词的 字母级表示, 一个mini-batch保存了一句话的 words. 例如:[['p', 'y', 't', 'o', 'r', 'c', '...
我认为,线索是尝试通过使用proj_size、num_layers和dropout参数来利用LSTM模块来获得它们的价值。
print(packed_sequence) 但是pack_sequence这玩意返回的PackedSequence是batch_first=False的,这就让我很不爽,这意味着我的RNN必须是batch_first=False,所以不得不重新定义网络 rnn = nn.RNN(1, 3, batch_first=False) print(rnn(packed_sequenc...