1.1 npu_fusion_attention注意力机制融合算子 1.5.1 注意力机制的前向传播 这部分代码实现了一个注意力机制的前向传播过程,支持两种不同的实现方式:eager模式和SDPA(Flash Attention)模式。 主要功能分解 (1). eager_attention_forward 函数 这是基础的自注意力实现,使用标准的PyTorch操作
为了彻底地解决这个超立方体问题,PyTorch 团队引入了 FlexAttention,一个新的 PyTorch API。 FlexAttention 是一个灵活的 API,允许用户使用几行惯用的 PyTorch 代码就能实现多个注意力变体。 团队人员通过 torch.compile 将其降低到一个融合的...
1. Flash Attention V1算法伪代码2. Flash Attention V1图解3. Pytorch版本Flash Attention V1算法实现def flash_attentionv1(Q_mat,K_mat,V_mat): Br,Bc = 4,d O,l,m = torch.zeros((N,d)),torch.zeros((N,1)),to…
PyTorch 的 SDPA 操作基于 Flash Attention、FlashAttentionV2 和 xFormer 的内存高效注意力原理构建,可以显着加快 GPU 注意力。与 torch.compile 相结合,这个操作允许在 MultiheadAttention 的变体中表达和融合一个共同的模式。经过一小部分更改后,现在模型可以使用 scaled_dot_product_attention。 内核跟踪 现在可以看到...
在实现注意力机制时,数据的处理相对直接。我们将数据重塑,使得高度(h)和宽度(w)的维度合并成“序列”维度,类似于传统Transformer模型的输入,而通道维度则变成嵌入特征维度。使用,因为这个实现包含了flash attention,这是一种优化版的注意力机制,从数学上与经典注意力等价。定义UNET的一个完整层: ...
FlexAttention 是一个灵活的 API,允许用户使用几行惯用的 PyTorch 代码就能实现多个注意力变体。 团队人员通过 torch.compile 将其降低到一个融合的 FlashAttention 内核中 ,生成了一个不会占用额外内存且性能可与手写内核相媲美的 FlashAttention 内核。
我们将数据重塑,使得高度(h)和宽度(w)的维度合并成“序列”维度,类似于传统Transformer模型的输入,而通道维度则变成嵌入特征维度。使用torch.nn.functional.scaled_dot_product_attention,因为这个实现包含了flash attention,这是一种优化版的注意力机制,...
本文主要是Pytorch2.0 的小实验,在MacBookPro 上体验一下等优化改进后的Transformer Self Attention的性能,具体的有 FlashAttention、Memory-Efficient Attention、CausalSelfAttention 等。主要是torch.compile(model) 和 scaled_dot_product_attention的使用。
FlexAttention 是一个灵活的 API,允许用户使用几行惯用的 PyTorch 代码就能实现多个注意力变体。 团队人员通过 torch.compile 将其降低到一个融合的 FlashAttention 内核中 ,生成了一个不会占用额外内存且性能可与手写内核相媲美的 FlashAttention 内核。
🚀 The feature, motivation and pitch Hoping scaled_dot_product_attention supports it Alternatives No response Additional context No response cc @albanD @mruberry @jbschlosser @walterddr @mikaylagawarecki @bhosmer @cpuhrsch @erichan1 @drisspg