DataLoader(dataset,batch_size=1,shuffle=False,sampler=None,batch_sampler=None,num_workers=0,collate_fn=None,pin_memory=False,drop_last=False,timeout=0,worker_init_fn=None,*,prefetch_factor=2,persistent_workers=False) 几个重要参数 dataset:必须首先使用数据集构造 DataLoader 类。 Shuffle:是否重新整...
DataLoader返回的是可迭代的数据装载器(DataLoader),其初始化的参数设置如下。 DataLoader(dataset,batch_size=1,shuffle=False,sampler=None,batch_sampler=None,num_workers=0,collate_fn=None,pin_memory=False,drop_last=False,timeout=0,worker_init_fn=None, *,prefetch_factor=2,persistent_workers=False) 在...
要更加细致地理解Sampler原理,我们需要先阅读一下DataLoader 的源代码,如下: 代码语言:txt AI代码解释 class DataLoader(object): def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False...
这两个类的实现是在dataloader.py的同级目录下的torch/utils/data/sampler.pytorch/utils/data/sampler.pytorch/utils/data/sampler.pytorch/utils/data/sampler.pytorch/utils/data/sampler.py sampler.py中实现了一个父类Sampler,以及SequentialSampler,RandomSampler和BatchSampler等五个继承Sampler的子类 这里面的Sampler...
一、DataLoader的基本参数 使用DataLoader时,需要传入一个Dataset对象和一些可选参数。以下是DataLoader的一些常用参数: dataset(必需):要加载的数据集,必须是Dataset类的实例。 batch_size(可选,默认为1):每个批次包含的数据样本数。 shuffle(可选,默认为False):是否在每个epoch开始时打乱数据。 sampler(可选):定义从...
dataset[possibly_batched_index] return self.collate_fn(data) Automatic batching 的处理逻辑可以简化为: sampler 采样dataset batch_sampler 依次将 sampler 采样得到的 indices 进行合并,当数量等于 batch_size 时将这个 batch 的 indices 返回。drop_last 决定是否丢弃最后不足一个 batch 的部分 DataLoader 依次...
DataLoader(dataset,batch_size=1,shuffle=False,sampler=None,batch_sampler=None,num_workers=0,collate_fn=None,pin_memory=False,drop_last=False,timeout=0,worker_init_fn=None,*,prefetch_factor=2,persistent_workers=False) dataset: 数据集 Dataset 类 ...
如果设置为True,则在每个epoch开始时,DataLoader会对数据集进行随机打乱,有助于提高模型的泛化能力。 sampler(可选):定义从数据集中抽取样本的策略。如果指定了Sampler,则shuffle参数将被忽略。Sampler可以自定义抽取样本的方式,如按照特定比例进行抽样等。 batch_sampler(可选):与Sampler类似,但一次返回一个批次的索引...
第2个步骤从0到n-1的范围中抽样出m个数的方法是由 DataLoader的sampler和batch_sampler参数指定的。 sampler参数指定单个元素抽样方法,一般无需用户设置,程序默认在DataLoader的参数shuffle=True时采用随机抽样,shuffle=False时采用顺序抽样。 batch_sampler参数将多个抽样的元素整理成一个列表,一般无需用户设置,默认方法...
第2个步骤从0到n-1的范围中抽样出m个数的方法是由 DataLoader的 sampler和 batch_sampler参数指定的。 sampler参数指定单个元素抽样方法,一般无需用户设置,程序默认在DataLoader的参数shuffle=True时采用随机抽样,shuffle=False时采用顺序抽样。 batch_sampler参数将多个抽样的元素整理成一个列表,一般无需用户设置,默认方...