本文分享自华为云社区《全套解决方案:基于pytorch、transformers的中文NLP训练框架,支持大模型训练和文本生成,快速上手,海量训练数据》,作者: 汀丶 。 1.简介 目标:基于pytorch、transformers做中文领域的nlp开箱即用的训练框架,提供全套的训练、微调模型(包括大模型、文本转向量、文本生成、多模态等模型)的解决方案; 数...
这篇文章主要介绍Pytorch中常用的几个循环神经网络模型,包括RNN,LSTM,GRU,以及其他相关知识点。 nn.Embedding 在使用各种NLP模型之前,需要将单词进行向量化,其中,pytorch自带一个Embedding层,用来实现单词的编码。Embedding层 随机初始化了一个查询表,他可以将一个词转换成一个词向量。需要注意的是,Embedding层输入的是...
2062 -- 57:36 App 【Pytorch 与神经网络】nlp任务介绍+代码复现 1198 -- 23:51:42 App B站强推!Pytorch入门到精通!不愧是2024公认最通俗易懂的【PyTorch】教程(深度学习/PyTorch安装/Pytorch教程/机器学习/神经网络) 1354 11 25:42:12 App 【整整200集】不愧是吴恩达,一口气把CNN、RNN、GAN、LSTM、YOLO、...
在CV任务,根据经验性的结论,对抗训练往往会使得模型在非对抗样本上的表现变差,然而神奇的是,在NLP任务中,模型的泛化能力反而变强了,如[1]中所述: While adversarial training boosts the robustness, it is widely accepted by computer vision researchers that it is at odds with generalization, with classifi...
对于pytorch中的一个tensor,如果设置它的属性 .requires_grad为True,那么它将会追踪对于该张量的所有操作。或者可以理解为,这个tensor是一个参数,后续会被计算梯度,更新该参数。 import torch x = torch.ones(2, 2, requires_grad=True) #初始化参数x并设置requires_grad=True用来追踪其计算历史 ...
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN 在自然语言处理中,文本分类是自然语言处理的一个常见任务,它把一段不定长的文本序列变换为文本的类别。本文将介绍它的一个子问题:使用文本情感分类来分析文本作者的情绪。这个问题也叫情感分析,并有着广泛的应用。例如,我们可以...
NLP实战一:Pytorch实现TextCNN文本分类 向AI转型的程序员都关注公众号机器学习AI算法工程 中文数据集 我从THUCNews中抽取了20万条新闻标题,已上传至github,文本长度在20到30之间。一共10个类别,每类2万条。 类别:财经、房产、股票、教育、科技、社会、时政、体育、游戏、娱乐。
近年来,大型语言模型(Large Language Models, LLMs)在自然语言处理(Natural Language Processing, NLP)领域取得了显著进展。这些模型通过在大规模文本数据上进行预训练,能够习得语言的基本特征和语义,从而在各种NLP任务上取得了突破性的表现。为了将预训练的LLM应用于特定领域或任务,通常需要在领域特定的数据集上对模型进...
Apache OpenNLP; Stanford NLP suite; Gate NLP library 其中自然语言工具包(NLTK)是最受欢迎的自然语言处理库(NLP),它是用Python编写的,而且背后有非常强大的社区支持。 NLTK也很容易上手,实际上,它是最简单的自然语言处理(NLP)库。 在这个NLP教程中,我们将使用Python NLTK库。
Pytorch-从零开发NLP聊天机器人 1. 聊天机器人综合介绍 1.1 知识点 1.2 聊天机器人分类 1.21 从领域划分 固定领域(技术支持) 固定领域(天气查询) 开放领域(娱乐助手) 1.22 从模式划分 检索模式 应用: 简单原理: 生成模式 应用: 简单原理: 1.23 从功能划分...