y1,label='Line 1',color='blue')# 绘制第二条线plt.plot(x,y2,label='Line 2',color='red')# 添加标题和标签plt.title('Two Lines in One Plot')plt.xlabel('X-axis')plt.ylabel('Y-axis')# 添加图例plt.legend()# 显示
Plot (’ n’ ,‘ o’ ,data = obj)可以是 plt (x,y)或 plt (y,fmt)。在这种情况下,选择前一种解释,但发出警告。您可以通过添加一个空的格式字符串绘图(’ n’ ,‘ o’ ,” ,data = obj)来抑制警告。 返回值 list of Line2D A list of lines representing the plotted data. 代表绘制数据的...
add_subplot(1, 1, 1) In [46]: ax.plot(randn(1000).cumsum(), 'k', label='one') Out[46]: [<matplotlib.lines.Line2D at 0x7fb624bdf860>] In [47]: ax.plot(randn(1000).cumsum(), 'k--', label='two') Out[47]: [<matplotlib.lines.Line2D at 0x7fb624be90f0>] In [48]:...
In [44]: from numpy.random import randn In [45]: fig = plt.figure(); ax = fig.add_subplot(1, 1, 1) In [46]: ax.plot(randn(1000).cumsum(), 'k', label='one') Out[46]: [<matplotlib.lines.Line2D at 0x7fb624bdf860>] In [47]: ax.plot(randn(1000).cumsum(), 'k--'...
plot(xn,yn2) [<matplotlib.lines.Line2D at 0x20a8da18280>] #对比一下自定义的cs和scipy的cs,完全一致 for idx in range(len(x)-1): print(np.round(sp_cs.c[:,idx][::-1],4)) #scipy的abcd顺序是反过来写的 print(np.round(ncs.coef[:,idx],4)) [ 8.8516 0.2772 0. -0.2094] [ ...
You can loosely think of it as a process where you create figures one at a time,and all commands affect the current figure and the current plot. 您可以粗略地将其视为一个一次创建一个地物的过程,所有命令都会影响当前地物和当前绘图。 We will mostly use NumPy arrays for storing the data that...
19. ◑ What is the difference between the following two lines? Which one will give a larger value? Will this be the case for other texts? >>> sorted(set([w.lower() for w in text1])) >>> sorted([w.lower() for w in set(text1)]) 不同, 第一句,对于text1中的所有w先小写(如...
ax.plot(npr.randn(1000).cumsum(),'k',label ='one') ax.plot(npr.randn(1000).cumsum(),'k--',label ='two') ax.plot(npr.randn(1000).cumsum(),'k.',label ='three') ax.legend(loc='best') plt.show() 注解与绘图 #-*- encoding: UTF-8 -*-importnumpy as npimportpandas as pdim...
使用plt.plot()生成频率的线图 方法2:- 使用plt.hist()函数计算并生成直方图(我添加了bin=250,这样两个直方图就一致了) 观察:两种直方图大致相似。第一个直方图(使用plt.plot)看起来非常平滑。但是第二个直方图(使用plt.hist)有额外的尖峰和下降。 问题:因为图像只有int值,所以不应该有不一致的binning。histogram...
python import matplotlib.pyplot as plt import pandas as pd data = {'A': [10, 20, 30], 'B': [40, 50, 60]} df = pd.DataFrame(data)A. df.plot()B. df.plot(kind='bar')C. plt.bar(df)D. plt.plot(df, kind='bar')答案:B 解析:使用DataFrame的plot方法并指定kind='bar'可绘制...