下面先展示python内置random函数、numpy中的random函数、tensorflow及pytorch中常见的seed使用方式(注:pytorch仅以CPU为例): 代码语言:javascript 代码运行次数:0 运行 AI代码解释 seed=1random.seed(seed)np.random.seed(seed)tf.random.set_seed(seed)torch.manual_seed(seed)list=[1,2,3,4,5,6,7,8,9]a=r...
使用setseed函数 Python的random模块提供了一个setseed函数,允许我们设置随机数生成器的种子。通过设置种子,我们可以控制随机数的生成过程,使得生成的随机数序列是可重现的。 下面是一个使用setseed函数的例子: importrandom# 设置随机数生成器的种子random.seed(1)# 生成10个随机数for_inrange(10):print(random.rand...
importnumpyasnpdefsetup_seed(seed):np.random.seed(seed)defrandom_func_a():# return a random arrayreturnnp.random.rand(10)defrandom_func_b():# get a random index between 0-9returnnp.random.randint(0,10)defrandom_func_c(arr):# randomly choose a val from an arrayreturnnp.random.choice...
下面先展示python内置random函数、numpy中的random函数、tensorflow及pytorch中常见的seed使用方式(注:pytorch仅以CPU为例): seed=1 random.seed(seed) np.random.seed(seed) tf.random.set_seed(seed) torch.manual_seed(seed) list=[1,2,3,4,5,6,7,8,9] a=random.sample(list,5) b=np.random.randn(...
在TensorFlow中,我们可以使用tf.random.set_seed()函数来设置随机种子。例如: import tensorflow as tf tf.random.set_seed(42) 这将设置随机种子为42。请注意,这种方法只会影响TensorFlow中的随机过程,而不会影响Python标准库或PyTorch中的随机过程。为什么我们需要设置随机种子?设置随机种子的主要原因是为了确保实验...
tf.random.set_seed(10) act_func ='relu' # Input layer: model=Sequential() # First hidden layer, connected to input vector X. model.add(Dense(10,activation=act_func, kernel_initializer='glorot_uniform', kernel_regularizer=regularizer...
random.seed(seed) random.set_seed(seed) 2.3 创建模型 需要定义个网格的架构函数create_model,create_model里面的参数要在KerasClassifier这个对象里面存在而且参数名要一致。 def create_model(learn_rate, momentum, decay): # 创建模型 model = Sequential() model.add(Dense(50, input_shape=(8, ), kernel...
tf.random.set_seed(42) 这个操作会影响TensorFlow框架内部所有依赖随机数的操作,确保随机数生成的一致性。对于使用TensorFlow进行深度学习和机器学习实验的研究人员来说,正确设置随机数种子是确保实验可重复性的关键一步。 理解TensorFlow的随机性控制 虽然通过设置全局随机数种子可以实现大部分随机性的控制,但TensorFlow的...
defset_random_seed(seed):# 设置Python的随机种子 random.seed(seed)# 设置NumPy的随机种子 np.random.seed(seed)# 设置CPU的随机种子 torch.manual_seed(seed)# 设置当前GPU设备的随机种子 torch.cuda.manual_seed(seed)# 设置所有GPU设备的随机种子(如果使用多GPU) ...
tf.set_random_seed(1234) tf.zeros(()) # new op added before generate = tf.random_uniform(()) with tf.Session() as sess: print(generate.eval()) # 0.29252338 但是,如果一个节点是在之后创建的,它不会影响操作种子: import tensorflow as tf ...