Python的random模块提供了一个setseed函数,允许我们设置随机数生成器的种子。通过设置种子,我们可以控制随机数的生成过程,使得生成的随机数序列是可重现的。 下面是一个使用setseed函数的例子: importrandom# 设置随机数生成器的种子random.seed(1)# 生成10个随机数for_inrange(10):print(random.randint(1,100)) 1...
"""Set random seeds.""" random.seed(seed) # 设置 Python 内置随机库的种子 np.random.seed(seed) # 设置 NumPy 随机库的种子 torch.manual_seed(seed) # 设置 PyTorch 随机库的种子 torch.cuda.manual_seed(seed) # 为当前 CUDA 设备设置种子 torch.cuda.manual_seed_all(seed) # 为所有 CUDA 设备...
首先导入库: # 导入模块importrandomimportnumpyasnpimporttensorflowastfimporttorchimporttime 下面先展示python内置random函数、numpy中的random函数、tensorflow及pytorch中常见的seed使用方式(注:pytorch仅以CPU为例): seed =1random.seed(seed) np.random.seed(seed) tf.random.set_seed(seed) torch.manual_seed(se...
下面先展示python内置random函数、numpy中的random函数、tensorflow及pytorch中常见的seed使用方式(注:pytorch仅以CPU为例): 代码语言:javascript 复制 seed=1random.seed(seed)np.random.seed(seed)tf.random.set_seed(seed)torch.manual_seed(seed)list=[1,2,3,4,5,6,7,8,9]a=random.sample(list,5)b=np....
在TensorFlow中,我们可以使用tf.random.set_seed()函数来设置随机种子。例如: import tensorflow as tf tf.random.set_seed(42) 这将设置随机种子为42。请注意,这种方法只会影响TensorFlow中的随机过程,而不会影响Python标准库或PyTorch中的随机过程。为什么我们需要设置随机种子?设置随机种子的主要原因是为了确保实验...
在工程实践中,我们经常会使用到随机数种子。以深度学习为例,为了能稳定复现各种结果,我们往往需要固定random, np, pytorch(作者是pytorch的小粉丝)的随机数种子。如下写法: def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) ...
Hoe to set random seed programwide in python? 1.利用random包设置 import random random.seed(n) # n就是你想设置的随机种子 2. 利用numpy包设置 numpy.random numpy.random.seed(n) 由于经常要调用别人的包,你也不知道别人是用的什么包产生随机数,所以最好把这两个都设置上。但由于你也不知道你调用的...
defset_random_seed(seed):# 设置Python的随机种子 random.seed(seed)# 设置NumPy的随机种子 np.random.seed(seed)# 设置CPU的随机种子 torch.manual_seed(seed)# 设置当前GPU设备的随机种子 torch.cuda.manual_seed(seed)# 设置所有GPU设备的随机种子(如果使用多GPU) ...
我们在python工程和数据分析中经常用到随机的操作,比如随机生成某个值,对一串数据进行随机排序等等。random是python一个很强的第三方库,可以实现常用的随机算法。 安装:pip install random 一:生成随机的数字 0~1之间的随机小数(float):random.random()
random模块详解 1、random.seed(a=None, version=2) # 初始化伪随机数生成器。如果未提供a或者a=None,则使用系统时间为种子。如果a是一个整数,则作为种子。 2、random.getstate() # 返回一个当前生成器的内部状态的对象 3、random.setstate(state) # 传入一个先前利用getstate方法获得的状态对象,使得生成器...