DataFrame.isin(values) #是否包含数据框中的元素 DataFrame.where(cond[, other, inplace, …]) #条件筛选 DataFrame.mask(cond[, other, inplace, …]) #Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other. DataFra...
Pandas利用Numba在DataFrame的列上进行并行化计算,这种性能优势仅适用于具有大量列的DataFrame。 In [1]: import numba In [2]: numba.set_num_threads(1) In [3]: df = pd.DataFrame(np.random.randn(10_000, 100)) In [4]: roll = df.rolling(100) # 默认使用单Cpu进行计算 In [5]: %timeit r...
interpolate([method, axis, limit, inplace, ...]) 使用插值方法填充NaN值。 isetitem(loc, value) 在位置loc的列中设置给定值。 isin(values) 检查DataFrame中的每个元素是否包含在值中。 isna() 检测缺失值。 isnull() DataFrame.isnull是DataFrame.isna的别名。 items() 迭代(列名,Series)对。 iterrows(...
DataFrame.xs(key[, axis, level, drop_level])Returns a cross-section (row(s) or column(s)) from the Series/DataFrame. DataFrame.isin(values)是否包含数据框中的元素 DataFrame.where(cond[, other, inplace, …])条件筛选 DataFrame.mask(cond[, other, inplace, axis, …])Return an object of ...
DataFrame.get_dtype_counts() 返回数据框数据类型的个数 DataFrame.get_ftype_counts() Return the counts of ftypes in this object. DataFrame.select_dtypes([include, exclude]) 根据数据类型选取子数据框 DataFrame.values Numpy的展示方式 DataFrame.axes ...
四、DataFrame 1、创建 2、基本属性 a.shape # 行数 列数 a.dtypes # 列数据类型 a.ndim # 数据维度 a.index # 行索引 a.columns # 列索引 a.values # 对象值,二维ndarray数组 a.head(2) # 显示头部几行,默认5行 a.tail(2) # 显示末尾几行,默认5行 ...
Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。Pandas提供了大量能使我们快速便捷地处理数据的函数和方法。你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一。本文主要介绍一下Pandas中pandas.DataFrame.round方法的使用。
stock_data=stock_data.sort_values(by='日期')# 打印数据的前5行print(stock_data.head()) 要得到数据的更多信息,可以使用.info()方法。它告诉我们该数据一共有1481行,索引是时间格式,日期从2013年1月4日到2019年3月14日。总共有9列,并列出了每一列的名称和数据格式,并且没有缺失值,其中pb为1434行,即...
avg_gender_income_df = np.round(pd.pivot_table(bike_df, values = 'Income', index = ['Gender'], columns = ['Purchased Bike'], aggfunc = np.mean ),2)# 将数据透视表放入Excel表格中,并且指定工作表with pd.ExcelWriter(file_name,#工作表的名称 engine='openpyxl',#引擎的名称 mode='a',#...
scipy import signal #处理信号df = pd.read_csv('https://raw.githubusercontent.com/selva86/datasets/master/a10.csv', parse_dates=['date'])detrended = signal.detrend(df.value.values) #用于去趋势化(detrend)#df.value 返回的是一个 pandas Series 对象,它代表了 DataFrame 中名为 'value' 的列...