1 创建一维数组 首先导入numpy库,然后用np.array函数创建一维数组,具体代码如下: 2 使用嵌套列表创建二维数组 接着应用array函数使用嵌套列表创建二维数组,具体代码如下: import numpy as np # 使用嵌套列表创建二维数组 arr2 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) print(arr2)
我们可以使用 NumPy’sset_printoptions()方法来调整输出的格式。下面的示例代码展示了如何设置打印精度: importnumpyasnp# 创建包含浮点数的二维数组array_2d_float=np.array([[1.12345,2.12345,3.12345],[4.12345,5.12345,6.12345]])# 设置打印选项np.set_printoptions(precision=2)print("格式化后的二维数组为:")pr...
np.sum(array,1) //对矩阵所有行元素求和的向量 1. 2. 3. 其他可以进行数据分列分行计算的函数 array.prod( ) //各元素累乘 ,0按列,1按行 array.min() //各元素最小,0按列,1按行 array.mean() //各元素求和取均值,0按列,1按行 array.std() //各元素求标准差,0按列,1按行 array.var() ...
print(my_list[0]) # 列表输出:1 print(my_array[0]) # numpy数组输出:1 修改数组中的元素:my_list[0] = 10 # 根据索引直接修改print(my_list) # 输出:[10, 2, 3, 4, 5] # 对于numpy数组 my_array[0] = 10 print(my_array) # 输出:[10, 2, 3, 4, 5]遍历数...
y=x.astype(numpy.int32)print(y)#[1 2 3]print(x)#[ 1. 2.6 3. ]z =y.astype(numpy.float64)print(z)#[ 1. 2. 3.]print('将字符串元素转换为数值元素') x= numpy.array(['1','2','3'],dtype =numpy.string_) y=x.astype(numpy.int32)print(x)#['1' '2' '3'] #[b'1' ...
array([1, 2, 3, 4, 5, 6]) for x in array: print(x) Output: 1 2 3 4 5 6 在上面的例子中,我们创建了一个一维数组,并成功地遍历访问了每个值。现在让我们来看一个二维矩阵中的例子: import numpy as np array = np.array([[1, 2, 3], [4, 5, 6]]) for x in array: for y ...
我又不会让array二维数组的其中一列变成int类型,怎么办呢。 通过np.delete将不需要分组的数据删除,数据如下 Original=np.array([[2,"张三"], [1,"李四"], [3,"王五"]]) temp = np.delete(Original.T,1,axis=0).T print(temp) 接下来我用一个 temp 临时数组进行替代。
步骤1:导入NumPy库 import numpy as np 步骤2:将列表转换为NumPy数组 ages = np.array(employee_ages)步骤3:计算基本统计数据 # 计算平均年龄average_age = np.mean(ages)# 计算最大年龄max_age = np.max(ages)# 计算最小年龄min_age = np.min(ages)步骤4:打印结果 print(f"员工的平均年龄为:{...
1、Array 它用于创建一维或多维数组 Dtype:生成数组所需的数据类型。 ndim:指定生成数组的最小维度数。 import numpy as npnp.array([1,2,3,4,5])---array([1, 2, 3, 4, 5, 6]) 还可以使用此函数将pandas的df和series转为NumPy数组。 sex = pd.Series(['Male','Male','Female'])np.array...
在Python中,numpy库的array函数用于将列表或元组转换为一个numpy数组。array函数的用法如下: importnumpyasnp# 创建一个一维数组arr1=np.array([1,2,3,4,5])print(arr1)# [1 2 3 4 5]# 创建一个二维数组arr2=np.array([[1,2,3],[4,5,6],[7,8,9]])print(arr2)# [[1 2 3]# [4 5 ...