你需要获取Excel文件的所有sheet页的名称,然后对每一个名称执行pd.read_excel函数。 importpandasaspd# 获取Excel文件的所有sheet页名称sheet_names = pd.ExcelFile('your_file.xlsx').sheet_names# 遍历所有的sheet页并读取数据all_data = {}forsheetinsheet_names: data = pd.read_excel('your_file.xlsx', s...
首先,认识一下pd.read_excel(),函数的官方文档是这么说的:将Excel文件读取到pandas DataFrame中,支持本地文件系统或URL的'xls'和'xlsx'文件扩展名,带有这两种扩展名的文件,函数都可以处理; 然后它的函数完整版长这个样子: pd.read_excel( io, sheet_name=0, header=0, names=None, index_col=None, usecols...
除了使用xlrd库或者xlwt库进行对excel表格的操作读与写,而且pandas库同样支持excel的操作;且pandas操作更加简介方便。 首先是pd.read_excel的参数:函数为: 复制pd.read_excel(io, sheetname=0,header=0,skiprows=None,index_col=None,names=None, arse_cols=None,date_parser=None,na_values=None,thousands=None,...
Python 读写Excel 可以使用 Pandas,处理很方便。但如果要处理 Excel 的格式,还是需要 openpyxl 模块,旧的 xlrd 和 xlwt 模块可能支持不够丰富。Pandas 读写 Excel 主要用到两个函数,下面分析一下 pandas.read_excel() 和 DataFrame.to_excel() 的参数,以便日后使用。 1. pandas.read_excel 代码语言:javascript...
importpandasaspd# 读取Excel文件的所有sheet页数据all_data=pd.read_excel('your_file.xlsx',sheet_name=None) 1. 2. 3. 4. 2. 使用循环遍历所有的sheet页数据 如果你想要更灵活地控制你的代码,你也可以使用for循环来遍历所有的sheet页。你需要获取Excel文件的所有sheet页的名称,然后对每一个名称执行pd.read...
read_excel('data.xlsx') # 数据清洗:去除重复记录 df = df.drop_duplicates() # 将处理后的数据写回Excel df.to_excel('cleaned_data.xlsx') 场景2:合并多个Excel工作表 代码语言:javascript 代码运行次数:0 运行 AI代码解释 # 读取Excel文件中的所有工作表 xls = pd.ExcelFile('multi_sheets.xlsx') #...
import pandas as pd 2. 使用pandas的read_excel函数读取Excel文件 接下来,使用pd.read_excel函数来读取Excel文件。你需要提供Excel文件的路径作为参数。 python # 假设Excel文件名为'example.xlsx',并且位于当前工作目录下 file_path = 'example.xlsx' df = pd.read_excel(file_path) 3. (可选)处理读取到...
本文将尝试使用Python pandas读取来自同一文件的多个Excel工作表。我们可以通过两种方式来实现这一点:使用pd.read_excel()方法,并使用可选的参数sheet_name;另一种方法是创建一个pd.ExcelFile对象,然后解析该对象中的数据。 注:本文示例文档可在知识星球完美Excel社群中下载。
Python脚本为`import pandas as pd df = pd.read_excel("data_test.xlsx") print("\n(1)全部数据:")print(df.iloc[:,:].values) print("\n(2)第2行第3列的值:")print(df.iloc[1,2]) print("\n(3)第3行数据:")print(df.iloc[2].values) ...
pandas的read_csv或者read_excel方法可以进行读取操作,我们看到参数很多,使用skiprows可以设置跳过相应的行数: pd.read_excel(io, sheetname=0,header=0,skiprows=None,index_col=None,names=None, arse_cols=None,date_parser=None,na_values=None,thousands=None, ...