从RGB 到 YUV 空间的 Y 转换公式为: Y = 0.299R+0.587G+0.114B 在WINDOWS 中,表示 16 位以上的图和以下的图有点不同; 16 位以下的图使用一个调色板来表示选择具体的颜色,调色板的每个单元是 4 个字节,其中一个透明度;而具体的像素值存储的是索引,分别是 1 、 2 、 4 、 8 位。 16 位以上的图...
jpg图片的色彩空间为RGB,png图片多一个透明通道,OpenCV读取到的图像色彩空间为BGR 色彩空间转换方法 gary = cv.cvtColor(image, cv.COLOR_BGR2GRAY) # 转换为灰度 hsv = cv.cvtColor(image, cv.COLOR_BGR2HSV) # 转换为hsv hsv = cv.cvtColor(image, cv.COLOR_HSV2BGR) # hsv转换为BGR,H通道范围为0-1...
1 打开python编译器,并加载opencv模块和图片。# -*- coding: utf-8 -*-import cv2imgpath = "C:/Users/Administrator/Desktop/a.png"img = cv2.imread(imgpath)cv2.imshow("Image",img)cv2.waitKey(0)2 运行一下,就可以看到图片。3 把图片变成灰度图:img0 = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)...
在OpenCV中,我们可以使用cv2.cvtColor()函数来将彩色图像转化为灰度图。cv2.cvtColor(src, code) -> dst 该函数接受两个参数:原始图像src这个src就是我们使用cv2.imread()读取出来的图像数据。转换的颜色空间code对于灰度图转换,我们将颜色空间参数设置为cv2.COLOR_BGR2GRAY 实例代码 import cv2# 读取彩色图像imag...
python+opencv 彩色图转灰度图原理 任何颜色都有红、绿、蓝三原色组成,某点的颜色为RGB(R,G,B),那么,我们可以通过下面几种方法,将其转换为灰度: 1.浮点算法:Gray=R*0.3+G*0.59+B*0.11 2.整数方法:Gray=(R*30+G*59+B*11)/100 3.移位方法:Gray =(R*28+G*151+B*77)>>8;...
第二种方式,可以通过 split 进行通道分离,或者叫做读取单个通道,也可以将一个彩色图像分离成 3 个单通道的灰度图像 今天要学习的方法,是通过一个叫做cvtColor的方法实现该操作。 cv2.cvtColor()方法用于将图像从一种颜色空间转换为另一种颜色空间。 OpenCV 提供了 150 多种 color-space 转换方法。多到用不过来~ ...
因此,一副灰度图能展示丰富的细节信息,如图1所示。 2. 从RGB/BGR色彩空间转换到GRAY色彩空间 不难发现,上一篇文章中的彩色花朵图与图1其实是一副图像,只是前者是彩色图像,后者是灰度图像。从这一点可以看出,同一副图像,是可以从一个色彩空间切换到另一个色彩空间的,OpenCV把这个转换过程称为色彩空间类型转换。
利用python如何读取、保存、二值化、灰度化图片呢?如何利用opencv来处理图片呢? 先说说处理图片有三种方式 一、matplotlib 二、PIL 三、opencv 下面来依次描述。 一、matplotlib # 1、显示图片 import matplotlib.pyplot as plt #plt 用于显示图片 import matplotlib.image as mpimg #mpimg 用于读取图片 ...
在OpenCV中,常见的颜色空间转换标识包括CV_BGR2BGRA、CV_RGB2GRAY、CV_GRAY2RGB、CV_BGR2HSV、CV_BGR2XYZ、CV_BGR2HLS等。 下面是调用cvtColor()函数将图像进行灰度化处理的代码。 #encoding:utf-8 import cv2 import numpy as np #读取原始图片 src = cv2.imread('miao.png')...
使用opencv将图片转为灰度图主要有两种方法,第一种是将彩色图转为灰度图,第二种是在使用OpenCV读取图片的时候直接读取为灰度图。 将彩色图转为灰度图 import cv2 import numpy as np if __name__ == "__main__": img_path = "timg.jpg" img = cv2.imread(img_path) ...