主成分分析(Principal components analysis,以下简称PCA)是最常用的降维方法之一,在数据压缩和消除冗余方面具有广泛的应用,本文由浅入深的对其降维原理进行了详细总结。 目录 1.向量投影和矩阵投影的含义 2. 向量降维和矩阵降维的含义 3. 基向量选择算法 4. 基向量个数的确定 5...
PCA的主要目标是将特征维度变小,同时尽量减少信息损失。就是对一个样本矩阵,一是换特征,找一组新的特征来重新表示;二是减少特征,新特征的数目要远小于原特征的数目。 通过PCA将n维原始特征映射到维(k<n)上,称这k维特征为主成分。需要强调的是,不是简单地从n 维特征中去除其余n- k维特征,而是重新构造出全新...
PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法。PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是密切相...
首先利用协方差矩阵计算出所有的特征向量后,将所有特征向量取出,再进行方差的归一化操作,最后左乘特征矩阵u(其实相当于把数据还原回去)。 它并不降低数据维度,而仅仅在PCA白化的步骤中保留所有成分,最后增加了一个旋转的步骤,这样仍然是单位方差。 6、总结 PCA算法非常巧妙地利用协方差矩阵来计算出样本集在不同方向上...
PCA主成分分析原理 PCA的原理可以通过以下步骤来解释: 1.数据中心化:首先,对原始数据进行中心化的处理,这个步骤是为了消除数据中的平均值,使得数据的均值为0。通过对每个维度的数据减去该维度的均值,可以得到中心化后的数据。 2.计算协方差矩阵:协方差矩阵是原始数据的特征之间的关系的度量,它描述了不同特征之间的...
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结。 1. PCA的思想 PCA顾名思义,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据。具...
主成分分析PCA(Principal Component Analysis)是一种常用的数据分析方法。PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量,常用于高维数据的降维。 本文用直观和易懂的方式叙述PCA的基本数学原理,不会引入严格的数学推导。希望读者在看完这...
主成分分析(PCA)原理详解 PCA的基本原理如下: 1.数据标准化:对数据进行标准化处理,使得每个特征的均值为0,方差为1、这一步骤是为了保证不同特征的量纲一致,避免一些特征因数值过大而对分析结果造成影响。 2.计算协方差矩阵:协方差矩阵描述了数据特征之间的相关性。通过计算标准化后的数据的协方差矩阵,可以得到不...
第一个主成分是原始数据方差最大的方向,第二个主成分是与第一个主成分正交且方差次大的方向,依此类推。这样,通过选择保留的主成分数量,我们可以达到对数据进行降维的目的。 具体而言,PCA的步骤如下: 1.数据标准化:对原始数据进行标准化处理,使得数据的均值为0,方差为1、这一步骤可以避免不同量纲或单位的特征...