降维的算法有很多,比如奇异值分解(SVD)、主成分分析(PCA)、因子分析(FA)、独立成分分析(ICA)。 3. PCA原理详解 3.1 PCA的概念 PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法。PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特...
主成分分析(PCA)是一种广泛使用的数据降维算法,它通过将高维数据映射到低维空间,保留数据的主要特征,去除冗余信息,使得数据更易于分析和可视化。在机器学习和数据分析领域,PCA被广泛应用于数据预处理、特征提取和降维等方面。一、PCA的原理PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征,也被称为主成分。
PCA的主要目标是将特征维度变小,同时尽量减少信息损失。就是对一个样本矩阵,一是换特征,找一组新的特征来重新表示;二是减少特征,新特征的数目要远小于原特征的数目。 通过PCA将n维原始特征映射到维(k<n)上,称这k维特征为主成分。需要强调的是,不是简单地从n 维特征中去除其余n- k维特征,而是重新构造出全新...
主成分分析(PCA)原理详解 ⼀、PCA简介 1. 相关背景 在许多领域的研究与应⽤中,往往需要对反映事物的多个变量进⾏⼤量的观测,收集⼤量数据以便进⾏分析寻找规律。多变量⼤样本⽆疑会为研究和应⽤提供了丰富的信息,但也在⼀定程度上增加了数据采集的⼯作量,更重要的是在多数情况下,许多...
PCA的主要目标是将特征维度变小,同时尽量减少信息损失。就是对一个样本矩阵,一是换特征,找一组新的特征来重新表示;二是减少特征,新特征的数目要远小于原特征的数目。 通过PCA将n维原始特征映射到维(k<n)上,称这k维特征为主成分。需要强调的是,不是简单地从n 维特征中去...
主成分分析(PCA)原理详解 PCA的基本原理如下: 1.数据标准化:对数据进行标准化处理,使得每个特征的均值为0,方差为1、这一步骤是为了保证不同特征的量纲一致,避免一些特征因数值过大而对分析结果造成影响。 2.计算协方差矩阵:协方差矩阵描述了数据特征之间的相关性。通过计算标准化后的数据的协方差矩阵,可以得到不...
上图所示的左图中有5个离散点,降低维度,就是需要把点映射成一条线。将其映射到右图中黑色虚线上则样本变化最大,且坐标点更分散,这条黑色虚线就是第一主成分的投影方向。 PCA是一种线性降维方法,即通过某个投影矩阵将高维空间中的原始样本点线性投影到低维空间,以达到降维的目的,线性投影就是通过矩阵变换的方式...
PCA的思想是将n维特征映射到k维上(k<n),这k维是全新的正交特征。这k维特征称为主成分,是重新构造出来的k维特征,而不是简单地从n维特征中去除其余n-k维特征。 二、PCA实例 现在假设有一组数据如下: 行代表了样例,列代表特征,这里有10个样例,每个样例两个特征。可以这样认为,有10篇文档,x是10篇文档中“le...
一、PCA简介 1. 相关背景 主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。 上完陈恩红老师的《机器学习与知识发现》和季海波老师的《矩阵代数》两门课之后,颇有体会。最近在做主成分分析和奇异值分解...
一、PCA简介 1. 相关背景 主成分分析(Principal Component Analysis,PCA)是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多变量大样本无疑会...