To count the unique values of each column of a dataframe, you can use the pandas dataframenunique()function. The following is the syntax: counts = df.nunique() Here,dfis the dataframe for which you want to know the unique counts. It returns a pandas Series of counts. By default, the...
'missing_values': df.isnull().sum().sum(), 'duplicate_rows': df.duplicated().sum(), 'data_types': df.dtypes.value_counts().to_dict(), 'unique_values': {col: df[col].nunique() for col in df.columns} } return pd.DataFrame(report.items(), columns=['Metric', 'Value']) 特征...
df['column_name'] = df['column_name'].astype(str).replace('nan', '') 以上内容希望能对你有所帮助。 如何将取得pandas中某一列数据的所有去重之后的值 要取得pandas中某一列数据的所有去重之后的值,可以使用unique()函数。例如,要取得DataFrame中的column_name列的所有去重之后的值,可以使用以下代码: un...
Get unique values in column of Pandas dataframe Read more → Drop rows in Pandas Read more → Using the iloc() function to to replace values in column of pandas DataFrameThe iloc() function is similar to the loc() function and can be used to access columns and rows of a DataFrame. ...
Python program to get unique values from multiple columns in a pandas groupby # Importing pandas packageimportpandasaspd# Importing numpy packageimportnumpyasnp# Creating a dictionaryd={'A':[10,10,10,20,20,20],'B':['a','a','b','c','c','b'],'C':['b','d','d','f','e...
高效数据清洗与预处理,利用fillna、unique等函数,能够快速处理缺失值、去重等数据清洗工作,为模型输入做好数据预处理。 数据融合整合,Pandas 合并方法让您能够方便地横向或纵向合并多个数据源,打通数据壁垒,整合更多维度的信息。 发现数据潜在规律与异常,离散差分等分析手段,可以帮助您观测时间序列等数据的变化趋势,发现潜...
Series s.loc[indexer] DataFrame df.loc[row_indexer,column_indexer] 基础知识 如在上一节介绍数据结构时提到的,使用[](即__getitem__,对于熟悉在 Python 中实现类行为的人)进行索引的主要功能是选择较低维度的切片。以下表格显示了使用[]索引pandas 对象时的返回类型值: 对象类型 选择 返回值类型 Series seri...
(2) unique和nunique data['column'].nunique():显示有多少个唯一值 data['column'].unique():显示所有的唯一值 (3) count和value_counts data['column'].count():返回非缺失值元素个数 data['column'].value_counts():返回每个元素有多少个
To find unique values in multiple columns, we will use the pandas.unique() method. This method traverses over DataFrame columns and returns those values whose occurrence is not more than 1 or we can say that whose occurrence is 1.Syntax:pandas.unique(values) # or df['col'].unique() ...
importseabornassnssns.barplot(y=df['折扣'].value_counts().values,x=df['折扣'].value_counts().index)<AxesSubplot:> 这是因为 value_counts 函数返回的是一个 Series 结果,而 pandas 直接画图之前,无法自动地对索引先进行排序,而 seaborn 则可以。 如果想坚持使用pandas(背后是matplotlib)画图,那么可以先...