Pandas是基于NumPy的数据分析模块,它提供了大量的数据分析会用到的工具,可以说Pnadas是Python能成为强大数据分析工具的重要原因之一。 导入方式: import pandas as pd Pandas中的数据结构 Pandas中包含三种数据结构:Series、DataFrame和Panel,中文翻译过来就是相当于序列、数据框和面板。 这么
import pandas as pd # 读取数据集 df = pd.read_csv('data.csv') # 提取唯一值 column1_unique_values = df['column1'].unique() column2_unique_values = df['column2'].unique() # 打印唯一值 print('Unique values in column1:', column1_unique_values) print('Unique values in colum...
import pandas as pd import cudf import time # 使用 Pandas 加载数据 start = time.time() df_pandas = pd.read_csv('ecommerce_data.csv') pandas_load_time = time.time() - start # 使用 cuDF.pandas 加载数据 start = time.time() df_cudf = cudf.read_csv('ecommerce_data.csv') cudf_load...
unique()是Pandas中的一个函数,用于获取Series或DataFrame中的唯一值,它返回一个包含Series或DataFrame中唯一值的数组,按照它们在原始数据中的出现顺序排列。 对于足够长的序列,比 numpy.unique 快得多。包括 NA 值。 data = {'Name': ['John','Tom','Alice','John'],'Age': [20,25,30,20],'Gender':...
import numpy as np import matplotlib.path as mpath # 数据准备 species = df['species'].unique() data = [] # 只选择数值列(排除 species 列) numeric_columns = df.columns[:-1] for s in species: data.append(df[df['species'] == s][numeric_columns].mean().values) # 将 data 列表转换...
Python之科学运算Pandas模块 一、Series数列 Series Series是一种类似与一维数组的对象,由下面两个部分组成: values:一组数据(ndarray类型) index:相关的数据索引标签 Series的创建 第一种:由列表或numpy数组创建 列表创建: Series([1,2,3,4,5],index=['a','b','c','d','e'],name='Hello')...
from pandas import Series, DataFrame pandas常用命令 读取excel文件: df=pd.read_excel(fpath,sheet_name=name,usecols=[n,m,...]) 创建数据表: pd.DataFrame(dict, columns=dict.index, index=[dict.columnnum]) 一、数据表信息查看 1.查看维度:df.shape 2.查看数据格式 每一列数据的格式:df.dtypes 查...
df.values #值的二维数组,返回numpy.ndarray对象 s.nunique() #返回唯一值个数 s.unique() #唯一值数据,返回array格式 (3)数据筛选 数据筛选的本质无外乎就是根据行和列的特性来选择满足我们需求的数据,掌握这些基本的筛选方法就可以组合复杂的筛选方法。
python里column python里columns函数 【pandas统计分析】读取数据 数据库数据读取/存储: import pymysql from sqlalchemy import create_engine conn = create_engine('mysql+pymysql://root:123456@localhost:3306/databasename?charset=utf8') sql = 'select * from tb_name'...
python中column函数 python .columns 简介 DataFrame是pandas中最常见的对象(series也是) DataFrame提供的是一个类似表的结构,由多个Series组成DataFrame 是一个表格型的数据类型 DataFrame 常用于表达二维数据,什么叫做二维呢 ? 非常接近于电子表格,它的竖行称之为 columns,称之为 index,也就是说可以通过 columns 和 ...