import pandas as pd # 读取数据集 df = pd.read_csv('data.csv') # 提取唯一值 column1_unique_values = df['column1'].unique() column2_unique_values = df['column2'].unique() # 打印唯一值 print('Unique values in column1:', column1_unique_values) print('Unique values in colu...
unique()是Pandas中的一个函数,用于获取Series或DataFrame中的唯一值,它返回一个包含Series或DataFrame中唯一值的数组,按照它们在原始数据中的出现顺序排列。 对于足够长的序列,比 numpy.unique 快得多。包括 NA 值。 data = {'Name': ['John','Tom','Alice','John'],'Age': [20,25,30,20],'Gender':...
import numpy as np import matplotlib.path as mpath # 数据准备 species = df['species'].unique() data = [] # 只选择数值列(排除 species 列) numeric_columns = df.columns[:-1] for s in species: data.append(df[df['species'] == s][numeric_columns].mean().values) # 将 data 列表转换...
import pandas as pd import cudf import time # 使用 Pandas 加载数据 start = time.time() df_pandas = pd.read_csv('ecommerce_data.csv') pandas_load_time = time.time() - start # 使用 cuDF.pandas 加载数据 start = time.time() df_cudf = cudf.read_csv('ecommerce_data.csv') cudf_load...
unique_values = df[df['other'] == '条件']['column'].unique() 这行代码的含义是,首先通过条件筛选出满足"other"列为特定条件的行,然后再从这些行中提取"column"列的唯一值。 下面是对代码中使用的相关概念的解释: DataFrame:DataFrame是Pandas库中的一个数据结构,类似于表格,可以存储和处理...
pandas是 Python 的核⼼数据分析⽀持库,提供了快速、灵活、明确的数据结构,旨在简单、直观地处理关系型、标记型数据。pandas是Python进⾏数据分析的必备⾼级⼯具。 pandas的主要数据结构是 Series(⼀维数据)与 DataFrame (⼆维数据),这两种数据结构⾜以处理⾦融、统计、社会科学、⼯程等领域⾥的...
from pandas import Series, DataFrame pandas常用命令 读取excel文件: df=pd.read_excel(fpath,sheet_name=name,usecols=[n,m,...]) 创建数据表: pd.DataFrame(dict, columns=dict.index, index=[dict.columnnum]) 一、数据表信息查看 1.查看维度:df.shape 2.查看数据格式 每一列数据的格式:df.dtypes 查...
andas是基于Numpy构建的含有更高级数据结构和工具的数据分析包。类似于Numpy的核心是ndarray,pandas 也是围绕着 Series 和 DataFrame两个核心数据结构展开的。Series 和 DataFrame 分别对应于一维的序列和二维的表结构。 Pandas官方教程User Guide ,查看当前版本: ...
在pandas中,可以使用加法运算符(+)将两个数值型的列组合为一个新的列。例如,要将两个列A和B组合成一个新的列C,可以使用以下代码: import pandas as pd data = {'A': [1, 2, 3], 'B': [4, 5, 6]} df = pd.DataFrame(data) #将A列和B列组合成C列 ...
Python unique merge Use: out = df1[df1.Column1.isin(df2.Column1)] Prints: >>> out Column1 Column21 key_2 11002 key_3 1100 Pandas Unique Values作为带计数的列 您可以使用df.apply和pd.value_counts* df.apply(pd.value_counts).T bronze gold silverCanada 1 2 1China 1 1 2South Korea ...