多级索引 多级索引(也称层次化索引)是pandas的重要功能,可以在Series、DataFrame对象上拥有2个以及2个以上的索引。 实质上,单级索引对应Index对象,多级索引对应MultiIndex对象。 一、Series对象的多级索引 多级索引Series对象的创建 se1=pd.Series(np.random.randn(4),index=[list("aabb"),[1,2,1,2]]) se1 代码...
多级索引 多级索引(也称层次化索引)是pandas的重要功能,可以在Series、DataFrame对象上拥有2个以及2个以上的索引。 实质上,单级索引对应Index对象,多级索引对应MultiIndex对象。 一、Series对象的多级索引 多级索引Series对象的创建 se1=pd.Series(np.random.randn(4),index=[list("aabb"),[1,2,1,2]]) se1 代码...
得到的new_df将是A和B的一个MultiIndex复合索引,在导出excel时A列会默认合并单元格。如果要在excel中进行二次处理,合并单元格不利于进行数据的下一步处理。为了使得导出时不进行单元格合并,可对透视后的new_df 进行重建索引 result = result.reset_index() 这样的导出的excelA列就会不进行单元格合并了。
可以使用to_excel函数,如果需要导出到不同的sheet中,需要提前声明一个writer对象,该对象内含导出的路径...
关于MultiIndex,首先要注意它并不是简单的分组。在其内部,它只是一个扁平的标签序列,如下图所示: 还可以通过对行标签进行排序来获得同样的groupby效果: sort_index 你甚至可以通过设置一个相应的Pandas option 来完全禁用可视化分组:pd.options.display.multi_sparse=False。
pandas 如何在Python中使用MultiIndex和to_excel时使index=False或去掉第一列注意-只有一个小缺点,即单元...
具体操作方法如下:首先,执行透视操作以生成新数据框new_df。然后,通过调用reset_index()函数并设置参数drop=False,我们能够将复合索引转换回单个列。之后,再使用drop()函数删除不需要的列(例如原复合索引列),从而确保导出的Excel文件中A列不会发生单元格合并。通过上述步骤,我们能够避免在导出Excel...
# 指定’班级‘、’姓名‘这两列为层级索引MultiIndex df = pd.read_excel('C:/Users/asus/Desktop/index.xlsx',index_col=[1,0]) df 1. 2. 3. 也可以根据header参数指定哪行作为列名,或根据names参数自定义列名,具体见:https://www.cnblogs.com/xiaoshun-mjj/p/14538695.html ...
排序MultiIndex 由于多索引由多个级别组成,因此排序比单索引更做作。这仍然可以使用sort_index方法完成,但可以使用以下参数进行进一步微调。 要对列级别进行排序,指定axis=1。 读写多索引dataframe到磁盘 Pandas可以以完全自动化的方式将具有多重索引的DataFrame写入CSV文件:df.to_csv('df.csv ')。但是在读取这样的文件...
取消堆叠会将行索引的最后一级移动到列索引的新级别,从而导致列具有MultiIndex。 以下内容演示了此索引的最后一层(索引的axis层): [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-krkDxdUl-1681365731663)(https://gitcode.net/apachecn/apachecn-ds-zh/-/raw/master/docs/learning-pan...