(8) converters:用法同dtype,不同的是converters可以在通过dict对某一列或者某几列应用某一个函数,读取的是函数返回后的结果。通过dict对某一列应用函数 (9) engine:可以接受的参数有“ xlrd”,“ openpyxl”或“ odf”,用于使用第三方的库去解析excel文件。(10)true_values 和 false_values参数一般...
如果直接使用read_excel(filename),虽然列索引会默认为第一行,但是行索引并不会默认为第一列,而是会自动添加一个{0,1,2,3}作为行索引。因此需要达到我们的目的需要设定一下读取时的参数,如下: df = pd.read_excel(filename,index_col=0) # 即指定第一列为行索引 print(df) print('第0行第1列的数据为...
pd.read_excel('fake2excel.xlsx', index_col=None,na_values={'name':"庞强"}) # 使用na_values,自己定义不显示的数据 结果如下图所示:我们的表格里,有个人的名字叫:庞强我们不想显示这个人的名字于是我们就在na_values指定:name这一列是庞强的名字,置为空,在pandas里空值会用NaN表示。6、处理Exce...
def read_excel(io,sheet_name=0,header=0,names=None,index_col=None,parse_cols=None,usecols=None,squeeze=False,dtype=None,engine=None,converters=None, true_values=None, false_values=None,skiprows=None,nrows=None,na_values=None,keep_default_na=True,na_filter=True,verbose=False,parse_dates=Fals...
read_excel( io, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, keep_default_na=True, verbose=False, parse_dates=False, date_pars...
此外,Pandas还支持将数据写入各种格式的文件,如CSV、Excel等。这些功能使得Pandas成为数据分析领域的强大工具。总的来说,使用Pandas的read_excel()函数读取Excel文件非常简单方便。只需要安装Pandas库、导入Pandas模块,然后使用read_excel()函数即可读取Excel文件并获得DataFrame对象。在处理和分析数据时,Pandas提供了丰富的...
df=pd.read_excel(src_file,header=1,usecols=[1,2,3,4,5]) 也可以通过列名称来选择所需的列数据 代码语言:javascript 复制 df=pd.read_excel(src_file,header=1,usecols=['item_type','order id','order date','state','priority']) 这种做法在列的顺序改变但是列的名称不变的时候非常有用 ...
read_excel函数能够读取的格式包含:xls, xlsx, xlsm, xlsb, odf, ods 和 odt 文件扩展名。支持读取单一sheet或几个sheet。 下面记录的官方文档中提供的全部参数信息: pandas.read_excel( io, sheet_name=0, header=0, names=None, index_col=None, ...
pandas的io读取函数,都是read_开头的。当然还有其他函数。 具体的自行通过help()查看用法。 二、.read_excel() 参数 这里只用.read_excel()作为例子。 支持从本地文件系统或URL读取的xls,xlsx,xlsm,xlsb、odf、ods、odt文件扩展名。 支持读取单一sheet或几个sheet。